HUANG Dai-wen, GUO Bo-ling. On the Two-Dimensional Large-Scale Primitive Equations in Oceanic Dynamics (Ⅰ)[J]. Applied Mathematics and Mechanics, 2007, 28(5): 521-531.
Citation: HUANG Dai-wen, GUO Bo-ling. On the Two-Dimensional Large-Scale Primitive Equations in Oceanic Dynamics (Ⅰ)[J]. Applied Mathematics and Mechanics, 2007, 28(5): 521-531.

On the Two-Dimensional Large-Scale Primitive Equations in Oceanic Dynamics (Ⅰ)

  • Received Date: 2006-03-06
  • Rev Recd Date: 2007-04-09
  • Publish Date: 2007-05-15
  • The initial boundary value problem for the two-dimensional primitive equations of largescale oceanic motion in geophysics is considered.It was assumed that the depth of the ocean is a positive constant.First,if the initial data are square integrable,then,by Fadeo-Galerkin method,the existence of the global weak sohctions for the problem was obtained.Second,if the initial data and their vertical derivatives are all square integrable,then by Faedo-Galerkin method and anisotropit inequahites,the existerce and uniqueness of the global weakly strong solution for the above initial boundary problem was obtained.
  • loading
  • [1]
    Lions J L, Teman R,Wang S.New formulations of the primitive equations of atmosphere and applications[J].Nonlinearity,1992,5:237-288. doi: 10.1088/0951-7715/5/2/001
    [2]
    Lions J L,Teman R,Wang S.On the equations of the large scale ocean[J].Nonlinearity,1992,5:1007-1053. doi: 10.1088/0951-7715/5/5/002
    [3]
    Lions J L,Teman R,Wang S.Models of the coupled atmosphere and ocean(CAO I)[J].Computational Mechanics Advance,1993,1:1-54.
    [4]
    Lions J L,Teman R,Wang S.Mathematical theory for the coupled atmosphere-ocean models(CAO Ⅲ)[J].J Math Pures Appl,1995,74:105-163.
    [5]
    Wang S.On the 2D model of large-scale atmosphic motion: well-posedness and attractors[J].Nonlinear Anal,TMA,1992,18:17-60. doi: 10.1016/0362-546X(92)90046-H
    [6]
    Bresch D,Guillén-Gonzlez F,Masmoudi N,et al.On the uniqueness for the two-dimensional primitive equations[J].Diff Int Equ,2003,16(1):77-94.
    [7]
    Bresch D,Kazhikhov A,Lemoine J.On the two-dimensional hydrostatic Navier-Stokes equations[J].SIAM J Math Anal,2004,36(3):796-814.
    [8]
    Guillén-Gonzlez F,Masmoudi N,Rodríguez-Bellido M A.Anisotropic estimates and strong solutions for the primitive equations[J].Diff Int Equ,2001,14(11):1381-1408.
    [9]
    Petcu M, Temam R,Wirosoetisno D.Existence and regularity results for the primitive equations in the two dimensions[J].Comm on Pure and Appl Anal,2004,3(1):115-131. doi: 10.3934/cpaa.2004.3.115
    [10]
    黄代文,郭柏灵,关于海洋动力学中二维的大尺度原始方程组(Ⅱ)[J].应用数学和力学,2007,28(5):532-538.
    [11]
    Pedlosky J.Geophysical Fluid Dynamics[M].2nd Edition.Berhn/New York:Springer-Verlag,1987.
    [12]
    Washington W M,Parkinson C L.An Introduction to Three-Dimensional Climate Modelling[M].England:Oxford Univ Press,1986.
    [13]
    Lions J L.Quelques Méthodes de Résolutions Des Problémes aux Limites Nonlinéaires[M].Paris:Dunod,1969.
    [14]
    Teman R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M].Appl Math Ser Vol 68.2nd Edition.Berlin:Springer-Verlag,1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2548) PDF downloads(904) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return