LI Ji-bin, LI Ming, NA Jing. Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 789-797.
Citation: LI Ji-bin, LI Ming, NA Jing. Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 789-797.

Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation

  • Received Date: 2006-01-16
  • Rev Recd Date: 2007-04-04
  • Publish Date: 2007-07-15
  • By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations was shown. Some exact explicit parametric representations of kink wave solutions were given. Explicit parameter conditions to guarantee the existence of kink wave solutions were determined.
  • loading
  • [1]
    FAN En-gui.Uniformly constructing a series of explict exact solutions to nonlinear equations in mathematical physics[J].Chaos,Solitons and Fractals,2003,16:819-839. doi: 10.1016/S0960-0779(02)00472-1
    [2]
    LI Ji-bin,CHEN Guang-rong.Bifurcations of travelling wave solutions for four classes of nonlinear wave equations[J].Internat J Bifucation and Chaos,2005,15(12):3973-3998. doi: 10.1142/S0218127405014416
    [3]
    ZHANG Wei-guo,CHANG Qian-shun,JIANG Bao-guo.Explict exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers equations with nolinear terms of any order[J].Chaos Solitons and Fractals,2002,13:311-319. doi: 10.1016/S0960-0779(00)00272-1
    [4]
    Parkes E J,Duffy B R.Travelling wave solutions to a compound KdV-Burgers equation[J].Phys Letter A,1997,229(4):217-220. doi: 10.1016/S0375-9601(97)00193-X
    [5]
    FENG Zhao-sheng.A note on “Explict exact solutions to the compound KdV equation”[J].Phys Letter A,2003,312:65-71. doi: 10.1016/S0375-9601(03)00617-0
    [6]
    LI Biao,CHEN Yong,ZHANG Hong-qing.Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J].Appl Math Comput,2003,146(2):653-666. doi: 10.1016/S0096-3003(02)00610-0
    [7]
    LI Biao,CHEN Yong,ZHANG Hong-qing.Explict exact solutions for some nolinear partial differential equations with nonlinear terms of any order[J].Czech J Phys,2003,53:283-295. doi: 10.1023/A:1023488209337
    [8]
    LIU Chun-ping.Exact analytical solutions for nonlinear reaction-diffusion equations[J].Chaos Solitons and Fractals,2003,18:97-105. doi: 10.1016/S0960-0779(02)00590-8
    [9]
    Wan X Y,Zhu Z S,Lu Y K.Solitary wave solutions of the generalized Burgers-Huxley equation[J].J Phys A:Math Gen,1990,23:271-274. doi: 10.1088/0305-4470/23/3/011
    [10]
    Chow S N,Hale J K.Method of Bifurcation Theory[M].New York:Springer-Verlag,1981.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2567) PDF downloads(748) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return