LI Wei-hua, LUO En, HUANG Wei-jiang. Unconventional Hamilton-Type Variational Principles for Nonlinear Elastodynamics of Orthogonal Cable-Net Structures[J]. Applied Mathematics and Mechanics, 2007, 28(7): 833-842.
Citation:
LI Wei-hua, LUO En, HUANG Wei-jiang. Unconventional Hamilton-Type Variational Principles for Nonlinear Elastodynamics of Orthogonal Cable-Net Structures[J]. Applied Mathematics and Mechanics, 2007, 28(7): 833-842.
LI Wei-hua, LUO En, HUANG Wei-jiang. Unconventional Hamilton-Type Variational Principles for Nonlinear Elastodynamics of Orthogonal Cable-Net Structures[J]. Applied Mathematics and Mechanics, 2007, 28(7): 833-842.
Citation:
LI Wei-hua, LUO En, HUANG Wei-jiang. Unconventional Hamilton-Type Variational Principles for Nonlinear Elastodynamics of Orthogonal Cable-Net Structures[J]. Applied Mathematics and Mechanics, 2007, 28(7): 833-842.
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures can be established systematically. The unconventional Hamilton-type variational principle can fully characterize the initia-l boundary-value problem of this dynamics. An important integral relation was given, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
Ni Y Q,Ko J M,Zheng G.Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity[J].Journal of Sound and Vibration,2002,257(4):301-319. doi: 10.1006/jsvi.2002.5060
[5]
Warnitchai P,Fujino Y,Susumpow T.A Non-linear dynamic model for cables and Its application to a cable-structures system[J].Journal of Sound and Vibration,1995,187(4):695-712. doi: 10.1006/jsvi.1995.0553