| Citation: | LIN Jian-guo, XIE Zhi-hua, ZHOU Jun-tao. Three-Point Explicit Compact Difference Scheme With Arbitrary Order of Accuracy and Its Applicatin in CFD[J]. Applied Mathematics and Mechanics, 2007, 28(7): 843-852. | 
	                | [1] | 
					 Carpenter M H, Gottlieb D, Abarbanel S. The stability of numerical boundary treatments for compact high-order finite-difference schemes[J].Journal of Computational Physics,1993,108(2):272-295. doi:  10.1006/jcph.1993.1182 
					
					 | 
			
| [2] | 
					 Lele S K. Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42. doi:  10.1016/0021-9991(92)90324-R 
					
					 | 
			
| [3] | 
					 Chu P C, FAN Chen-wu.A three-point combined compact difference scheme[J].Journal of Computational Physics,1998,140(2):370-399. doi:  10.1006/jcph.1998.5899 
					
					 | 
			
| [4] | 
					 Mahesh K. A family of high order finite difference schemes with good spectral resolution[J].Journal of Computational Physics,1998,145(1):332-358. doi:  10.1006/jcph.1998.6022 
					
					 | 
			
| [5] | 
					 Hixon R. Prefactored small-stencil compact schemes[J].Journal of Computational Physics,2000,165(2):522-541. doi:  10.1006/jcph.2000.6631 
					
					 | 
			
| [6] | 
					 Tolstykh A I, Lipavskii M V.On performance of methods with third- and fifth-order compact upwind differencing[J].Journal of Computational Physics,1998,140(2):205-232. doi:  10.1006/jcph.1998.5887 
					
					 | 
			
| [7] | 
					 MA Yan-wen, FU De-xun, Kobayashi N,et al.Numerical solution of the incompressible Navier-Stokes equations with an upwind compact difference scheme[J].International Journal for Numerical Methods in Fluids,1999,30(5):509-521. doi:  10.1002/(SICI)1097-0363(19990715)30:5<509::AID-FLD851>3.0.CO;2-E 
					
					 | 
			
| [8] | 
					 MA Yan-wen, FU De-xun.Analysis of super compact finite difference method and application to simulation of vortex-shock interaction[J].International Journal for Numerical Methods in Fluids,2001,36(7):773-805. doi:  10.1002/fld.155 
					
					 | 
			
| [9] | 
					 Boersma B J. A staggered compact finite difference formulation for the compressible Navier-Stokes equations[J].Journal of Computational Physics,2005,208(2):675-690. doi:  10.1016/j.jcp.2005.03.004 
					
					 | 
			
| [10] | 
					 袁湘江,周恒.计算激波的高精度数值方法[J].应用数学和力学,2000,21(5):441-450. 
					
					 | 
			
| [11] | 
					 刘儒勋,吴玲玲.非线性发展方程的小模板简化pade格式[J]. 应用数学和力学,2005,26(7):801-809. 
					
					 | 
			
| [12] | 
					 Fomberg B, Ghrist M. Spatial finite difference approximations for wave-type equation[J].SIAM Journal on Numerical Analysis,1999,37(1):105-130. doi:  10.1137/S0036142998335881 
					
					 | 
			
| [13] | 
					 林建国,邱大洪.二阶非线性与色散性的Boussinesq类方程[J]. 中国科学,E辑,1998,28(6):567-573. 
					
					 | 
			
| [14] | 
					 Spotz W F. High order compact finite difference schemes for computational mechanics[D].Austin:University of Texas, 1995. 
					
					 | 
			
| [15] | 
					 Kalita J C, Dalal D C, Dass A K.A class of higher order compact schemes for the unsteady two-dimensional convection diffusion equation with variable convection coefficients[J].International Journal for Numerical Methods in Fluids,2002,38(12):1111-1131. doi:  10.1002/fld.263 
					
					 | 
			
| [16] | 
					 Ghia U, Ghia K N,Shin C T.High-Re solutions for imcompressible flow using the Navier-Stokes equation and a multigrid method[J].Journal of Computational Physics,1982,48(3):387-411. doi:  10.1016/0021-9991(82)90058-4 
					
					 |