FENG Da-he, LI Ji-bin. Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations[J]. Applied Mathematics and Mechanics, 2007, 28(8): 894-900.
Citation: FENG Da-he, LI Ji-bin. Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations[J]. Applied Mathematics and Mechanics, 2007, 28(8): 894-900.

Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations

  • Received Date: 2006-01-03
  • Rev Recd Date: 2007-03-29
  • Publish Date: 2007-08-15
  • By using the theory of bifurcations of planar dynamical systems to the coupled Jaulent-Miodek equations,the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travelling wave solutions is studied and the bifurcation parametric sets are shown.Under the given parametric conditions,all possible representations of explicit exact solitary wave solutions and periodic wave solutions are obtained.
  • loading
  • [1]
    Jaulent M, Miodek I.Nonlinear evolution equations associated with energy dependent Schrdinger potentials[J].Lett Math Phys,1976,1(3):243-250. doi: 10.1007/BF00417611
    [2]
    FAN En-gui. Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics[J].Chaos, Solitons and Fractals,2003,16(5):819-839. doi: 10.1016/S0960-0779(02)00472-1
    [3]
    Chow S N, Hale J K.Method of Bifurcation Theory[M].New York: Springer-Verlag,1981.
    [4]
    Guckenheimer J, Holmes P J.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M].New York: Springer-Verlag,1983.
    [5]
    LI Ji-bin. Solitary and periodic travelling wave solutions in Klein-Gordon-Schrdinger equation[J].Journal of Yunnan University,2003,25(3):176-180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2929) PDF downloads(760) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return