GUO Li-hui, FAN Tian-you. Solvability on Boundary-Value Problems of Elasyicity of Three-Dimensional Quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28(8): 949-957.
Citation: GUO Li-hui, FAN Tian-you. Solvability on Boundary-Value Problems of Elasyicity of Three-Dimensional Quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28(8): 949-957.

Solvability on Boundary-Value Problems of Elasyicity of Three-Dimensional Quasicrystals

  • Received Date: 2006-03-09
  • Rev Recd Date: 2007-06-10
  • Publish Date: 2007-08-15
  • Weak solution(or generalized solution)for the boundary-value problems of partial differential equations of elasticity of 3D(three-dimensional)quasicrystals was given,in which the matrix expression was used.In terms of Korn inequality and theory of function space,the uniqueness of the weak solution was proved.This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals,and develops the weak solution theory of elasticity of 2D quasicrystals.
  • loading
  • [1]
    Shechtman D, Blech I,Gratias D,et al.Metallic phase with long-range orientational order and no translational symmetry[J].Phys Rev Lett,1984,53(20):1951-1953. doi: 10.1103/PhysRevLett.53.1951
    [2]
    Penrose H.The role of arethtics in pure and applied mathematical research[J].Bull Inst Math Appl,1974,10(3):266-271.
    [3]
    Radin C.Quasicrystals and geometry[J].Notices of the American Mathematical Society,1996,43(4):416-419.
    [4]
    Fan T Y, Mai Y W.Elasticity theory, fracture mechanics and some relevant thermal properties of quasicrystalline materials[J].Appl Mech Rev,ASME,2004,57(5):325-344. doi: 10.1115/1.1763591
    [5]
    Li X F, Fan T Y.New method for solving elasticity problems of some planar quasicrystals and solutions[J].Chinese Phys Lett,1998,15(4):278-280. doi: 10.1088/0256-307X/15/4/016
    [6]
    Li X F,Fan T Y,Sun Y F.A decagonal quasicrystal with a Griffith crack[J].Philos Mag A,1999,79(8):1943-1952.
    [7]
    Fan T Y, Li X F,Sun Y F.Moving screw dislocation in a one-dimensional hexagonal quasicrystal[J].Chin Phys,1999,8(4):288-295.
    [8]
    Fan T Y.A study on specific heat of one-dimensional hexagonal quasicrystals[J].J Phys Condens Matter,1999,11(45):L513-517.
    [9]
    Liu G T, Fan T Y.Complex method of the plane elasticity in 2D quasicrystals with point group 10 mm ten-fold symmetry and notch problems[J].Sci China,Ser E,2003,46(3):326-336. doi: 10.1360/03ye9036
    [10]
    Fan T Y,Guo L H.Final governing equation of plane elasticity of icosahedral quasicrystals[J].Phys Lett A,2005,341(4):235-239. doi: 10.1016/j.physleta.2005.04.038
    [11]
    Li L H,Fan T Y.Final governing equation of plane elasticity of icosahedral quasicrystals and general solution based on stress potential function[J].Chinese Phys Lett,2006,23(9):2519-2521. doi: 10.1088/0256-307X/23/9/047
    [12]
    Li L H,Fan T Y.Stress potential function formulation and complex variable function method for solving elasticity of quasicrystals of point group 10 and exact solution for notch problem[J].J Phys Condens Matter,2006,18(47):10631-10641. doi: 10.1088/0953-8984/18/47/009
    [13]
    Zhu A Y,Fan T Y.Elastic field of mode II crack in an icosahedral quasicrystal[J].Chin Phys,2007,16(4):1111-1118. doi: 10.1088/1009-1963/16/4/042
    [14]
    Zhu Ai Y,Fan T Y,Guo L H.Elastic field for a dislocation in an icosahedral quasicrystal[J].J Phys Condens Matter,2007,19(19):236212. doi: 10.1088/0953-8984/19/23/236212
    [15]
    范天佑.准晶数学弹性理论及应用[M].北京:北京理工大学出版社,1999.
    [16]
    吴祥法.准晶弹性的数学模拟和数值分析[D].博士学位论文.北京:北京理工大学,1998.
    [17]
    Ding D H, Yang W G,Wang R H,et al.Generalized elasticity theory of quasicrystals[J].Phys Rev B,1993,48(10):7003-7010. doi: 10.1103/PhysRevB.48.7003
    [18]
    Courant R, Hilbert D.Methods of Mathematical Physics[M].New York:Interscience Publisher Inc,1955.
    [19]
    Фикера Г.Теоремы Существования Втеории Упруготи[M].Москва: Мир,1974.
    [20]
    Кондратьв В А,Олейник О А.Краевые Задачи для Системы Теории Упруготи в Неограниченных Областях,Неравенства Корна[M].Москва: УМН,1988.
    [21]
    Oden J J,Reddy J N.An Introduction to the Mathematical Theory of Finite Element[M].New York: John Wiley & Sons, 1976.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2711) PDF downloads(871) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return