Suthee Traivivatana, Parinya Boonmarlet, Patcharee Theeraek, Sutthisak Phongthanapanich, Pramote Dechaumphai. Combined Adaptive Meshing Technique and Characteristic Based Split Algorithm for Viscous Incompressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1037-1046.
Citation: Suthee Traivivatana, Parinya Boonmarlet, Patcharee Theeraek, Sutthisak Phongthanapanich, Pramote Dechaumphai. Combined Adaptive Meshing Technique and Characteristic Based Split Algorithm for Viscous Incompressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1037-1046.

Combined Adaptive Meshing Technique and Characteristic Based Split Algorithm for Viscous Incompressible Flow Analysis

  • Received Date: 2006-05-08
  • Rev Recd Date: 2007-05-08
  • Publish Date: 2007-09-15
  • A combined chara cteristic-based splitalgorithm and anada ptive meshing technique foranalyzing two-dimensional viscous incompressible flow is presented. The method uses the three-node triangular element with equal-order interpolation functions forall variables of the velocity components and pressure. The main a dvantage of the combined method is toimprove solution a ccuracy by coupling an error estimation procedure to anada ptivemeshing technique that generates small elements in regions with largechange in solution gradients, and at the same time, larger elements in other regions. The performance of the combined procedure is evaluated by analyzing the three testcases of the flow past a cylinder, for their transient and steady-state flow behaviors.
  • loading
  • [1]
    Yamada Y, Ito K, Yokouchi Y,et al.Finite element analysis of steady fluid and metal flow[J].Finite Elements in Fluids:Viscous Flow and Hydrodynamics,1974,1:73-94.
    [2]
    Kawahara M.Steady and unsteady finite element analysis of incompressible viscous fluid[J].Finite Elements in Fluids,1974,3:23-54.
    [3]
    Kawahara M, Yoshimura N, Nakagawa K,et al.Steady and unsteady finite element analysis of incompressible viscous fluid[J].International Journal for Numerical Methods in Engineering,1976,10:437-456. doi: 10.1002/nme.1620100213
    [4]
    Christie I, Griffiths D F, Mitchell A R, et al. Finite element methods for second order differential equations with significant first derivative[J].International Journal for Numerical Methods in Engineering,1976,10:1389-1396. doi: 10.1002/nme.1620100617
    [5]
    Heinrich J C, Huyakorn P S,Zienkiewicz O C,et al.An upwind finite element scheme for two-dimensional convective transport equation[J].International Journal for Numerical Methods in Engineering,1977,11:131-143. doi: 10.1002/nme.1620110113
    [6]
    Brooks A N, Heghes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,1982,32:199-259. doi: 10.1016/0045-7825(82)90071-8
    [7]
    Wansophark N, Dechaumphai P. Enhancement of streamline upwinding finite element solutions by adaptive meshing technique[J].JSME International Journal Ser B, Fluids and Thermal Engineering,2002,45:770-779. doi: 10.1299/jsmeb.45.770
    [8]
    Zienkiewicz O C, Codina, R. A General algorithm for compressible and incompressible flow-part Ⅰ:The split, characteristic-based scheme[J].International Journal for Numerical Methods in Fluids,1995,20:869-885. doi: 10.1002/fld.1650200812
    [9]
    P·德乔姆凡,S·封查那帕尼.用于高速可压缩流体分析的带多维耗散格式的自适应Delaunay三角剖分[J].应用数学和力学,2005,26(10),1216-1228.
    [10]
    Phongthanapanich S, Dechaumphai P. Evaluation of combined Delaunay triangulation and remeshing for finite element analysis of conductive heat transfer[J].Transactions of the Canadian Society for Mechanical Engineering,2004,27:319-340.
    [11]
    Frey W H. Mesh Relaxation: A new technique for improving triangulations[J].International Journal for Numerical Methods in Engineering,1991,31:1121-1133. doi: 10.1002/nme.1620310607
    [12]
    Borouchaki H, George P L, Mohammadi B. Delaunay mesh generation governed by metric specifications-part Ⅱ:Application[J].Finite Elements in Analysis and Design,1997,25:85-109. doi: 10.1016/S0168-874X(96)00065-0
    [13]
    White F M.Viscous Fluid Flow[M].Third edition.New York: McGraw-Hill, 2005.
    [14]
    Williamson C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low reynolds numbers[J].Journal of Fluid Mechanics,1989,206:579-627. doi: 10.1017/S0022112089002429
    [15]
    Braza M, Chassaing P, Ha Minh H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J].Journal of Fluid Mechanics,1986,165:79-130. doi: 10.1017/S0022112086003014
    [16]
    Karniadakis G E, Triantafyllou G S. A passive control of vortex shedding in the wake of a circular cylinder[J].Journal of Fluid Mechanics,1989,199:441-469. doi: 10.1017/S0022112089000431
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2836) PDF downloads(618) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return