HU Wei-peng, DENG Zi-chen, LI Wen-cheng. Multi-Symplectic Methods for Membrane Free Vibration Equation[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1054-1062.
Citation: HU Wei-peng, DENG Zi-chen, LI Wen-cheng. Multi-Symplectic Methods for Membrane Free Vibration Equation[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1054-1062.

Multi-Symplectic Methods for Membrane Free Vibration Equation

  • Received Date: 2007-01-18
  • Rev Recd Date: 2007-07-25
  • Publish Date: 2007-09-15
  • The multi-symplectic formulations of the membrane free vibration equation with periodic boundary conditions in Hamilton space were considered. The complex method was introduced and a semi-implicit twenty-seven-point scheme with certain discrete conservation lawsa multi-symplectic conservation law (CLS), an energy conservation law (ECL) as well as a momentum conservation law (MCL)is constructed to discrete the PDEs that are derived from the membrane free vibration equation. The results of the numerical experiments show that the multi-symplectic scheme has excellent long-time numerical behavior.
  • loading
  • [1]
    Bridge T J, Reich S.Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Phys Lett A,2001,284(4/5):184-193. doi: 10.1016/S0375-9601(01)00294-8
    [2]
    Moore B E, Reich S.Multi-symplectic integration methods for Hamiltonian PDEs[J].Future Generation Computer Systems,2003,19(3):395-402. doi: 10.1016/S0167-739X(02)00166-8
    [3]
    Bridges T J. Multi-symplectic structures and wave propagation[J].Math Proc Camb Philos Soc,1997,121(1):147. doi: 10.1017/S0305004196001429
    [4]
    Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].Computational Physics,2000,157(2):473-499. doi: 10.1006/jcph.1999.6372
    [5]
    Izu Vaisman.Symplectic Geometry and Secondary Characteristic Classes[M]. Boston: Birkhuser, 1987.
    [6]
    钟万勰. 应用力学的辛数学方法[M].北京:高等教育出版社,2006.
    [7]
    HONG Jia-lin, LI Chun.Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations[J].Computational Physics,2006,211(2):448-472. doi: 10.1016/j.jcp.2005.06.001
    [8]
    SUN Jian-qiang, QIN Meng-zhao.Multi-symplectic methods for the coupled 1D nonlinear Schrdinger system[J].Computer Physics Communications,2003,155(3):221-235. doi: 10.1016/S0010-4655(03)00285-6
    [9]
    Qin M Z, Zhang M Q. Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equation[J].Comput Math Appl,1990,19(10):51.
    [10]
    Yoshida H. Construction of higher order symplectic integrators[J].Phys Lett A,1990,150(5/7):262-269. doi: 10.1016/0375-9601(90)90092-3
    [11]
    哈尔滨工业大学数学系组.数学物理方程[M].北京:科学出版社,2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2656) PDF downloads(716) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return