WANG Zhi-qiao, DUI Guan-suo. Basis-Free Expressions for the Derivatives of a Subclass of Nonsymmetric Isotropic Tensor Functions[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1115-1122.
Citation: WANG Zhi-qiao, DUI Guan-suo. Basis-Free Expressions for the Derivatives of a Subclass of Nonsymmetric Isotropic Tensor Functions[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1115-1122.

Basis-Free Expressions for the Derivatives of a Subclass of Nonsymmetric Isotropic Tensor Functions

  • Received Date: 2006-11-03
  • Rev Recd Date: 2007-03-30
  • Publish Date: 2007-09-15
  • The method for solving the derivatives of symmetric isotropic tensor-valued functions proposed by Dui and Chen was generalized to a sub-class of nonsymmetric tensor functions satisfying the commutative condition. This subclass of tensor functions is more general than those investigated by the existing methods. In the case of three distinct eigenvalues, the commutativity makes it possible to introduce two scalar functions, which will be used to construct the general nonsymmetric tensor functions and their derivatives. In the cases of repeated eigenvalues, the results are acquired by taking limits.
  • loading
  • [1]
    Miehe C. Exponential map algorithm for stress updates in anisotropic multiplicative elasto-plasticity for single crystals[J].International Journal for Numerical Methods in Engineering,1996,39:3367-3390. doi: 10.1002/(SICI)1097-0207(19961015)39:19<3367::AID-NME4>3.0.CO;2-7
    [2]
    Sansour C, Kollmann F G. Large viscoplastic deformations of shells. Theory and finite element formulation[J].Computational Mechanics,1998,21:512-525. doi: 10.1007/s004660050329
    [3]
    Steinmann P, Stein E. On the numerical treatment and analysis of finite deformation ductile single crystal plasticity[J].Computer Methods in Applied Mechanics and Engineering,1996,129:235-254. doi: 10.1016/0045-7825(95)00913-2
    [4]
    Balendran B, Nemat-Nasser S. Derivative of a function of a nonsymmetric second-order tensor[J].Quarterly of Applied Mathematics,1996,54: 583-600.
    [5]
    De Souza Neto E A. The exact derivative of the exponential of a nonsymmetric tensor[J].Computer Methods in Applied Mechanics and Engineering,2001,190:2377-2383. doi: 10.1016/S0045-7825(00)00241-3
    [6]
    Itskov M, Aksel N. A closed-form representation for the derivative of non-symmetric tensor power series[J].International Journal of Solids and Structures,2002,39:5963-5978. doi: 10.1016/S0020-7683(02)00464-X
    [7]
    Itskov M. Application of the Dunford-Taylor integral to isotropic tensor functions and their derivatives[J].Proceedings of the Royal Society of London. Ser A,Mathematical & Physical Sciences,2003,459: 1449-1457.
    [8]
    Itskov M. Computation of the exponential and other isotropic tensor functions and their derivatives[J].Computer Methods in Applied Mechanics and Engineering,2003,192:3985-3999. doi: 10.1016/S0045-7825(03)00397-9
    [9]
    Lu J. Exact expansions of arbitrary tensor functions F(A) and their derivatives[J].International Journal of Solids and Structures,2004,41:337-349. doi: 10.1016/j.ijsolstr.2003.10.004
    [10]
    Dui G S. Discussion on ‘Exact expansions of arbitrary tensor functions F(A) and their derivatives’[J].International Journal of Solids and Structures,2005,42:4514-4515. doi: 10.1016/j.ijsolstr.2004.12.020
    [11]
    Dui G S, Ren Q, Shen Z. Time rates of Hill's strain tensors[J].Journal of Elasticity,1999,54:129-140. doi: 10.1023/A:1007603221060
    [12]
    WANG Zi-qiao,DIU Guan-sun.On the derivatives of a subclass of isotropic tensor functions of nonsymmetric tensor[J].International Journal of Solids and Structures,2007.
    [13]
    Dui G S, Chen Y C.Basis-free representations for the stress rate of isotopic materials[J].International Journal of Solids and Structures,2004,41:4845-4860. doi: 10.1016/j.ijsolstr.2004.03.003
    [14]
    Del Piero G. Some properties of the set of 4th-order tensors, with application to elasticity[J].Journal of Elasticity,1979,9:245-261. doi: 10.1007/BF00041097
    [15]
    Kintzel O, Basar Y. Fourth-order tensors - tensor differentiation with applications to continuum mechanics. Part I: classical tensor analysis[J].Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM),2006,86:291-311. doi: 10.1002/zamm.200410242
    [16]
    Dui G S, Wang Z D, Jin M. Derivatives on the isotropic tensor functions[J].Science in China Ser G,Physics, Mechanics & Astronomy,2006,49:321-334.
    [17]
    Ogden R.Non-linear Elastic Deformations[M].Ellis Horwood: Chichester, 1984.
    [18]
    黄筑平. 连续介质力学基础[M].北京:高等教育出版社, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2782) PDF downloads(978) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return