YU Ming-zhou, LIN Jian-zhong, CHEN Li-hua. Nanoparticle Coagulation in a Planar Jet via Moment Method[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1287-1295.
Citation: YU Ming-zhou, LIN Jian-zhong, CHEN Li-hua. Nanoparticle Coagulation in a Planar Jet via Moment Method[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1287-1295.

Nanoparticle Coagulation in a Planar Jet via Moment Method

  • Received Date: 2005-11-01
  • Rev Recd Date: 2007-07-16
  • Publish Date: 2007-11-15
  • Large eddy simulations of nanoparticle coagulation in an incompressible planar jet were performed. The particle is described using a moment method to approximate the particle general dynamics equations. The time-averaged results based on 3 000 time steps for every case were obtained to explore the influence of the Schmidt number and the Damkohler number on the nanoparticle dynamics. The results show that the changes of Schmidt number have the influence on the number concentration of nanoparticles only when the particle diameter is less than 1nm for the fixed gas parameters. The number concentration of particles for small particles decreases more rapidly along the flow direction, and the nanoparticles with larger Schmidt number have a narrower distribution along the transverse direction. The smaller nanoparticles coagulate and disperse easily, grow rapidly hence show a stronger polydispersity. The smaller coagulation time scale can enhance the particle collision and coagulation. Frequent collision and coagulation bring a great increase in particle size. The larger the Damkohler number, the higher the particle polydispersity.
  • loading
  • [1]
    Yu M Z,Lin J Z,Chen L H.Large eddy simulation of a planar jet flow with nanoparticle coagulation[J].Acta Mechanica Sinica,2006,22(4):293-300. doi: 10.1007/s10409-006-0011-z
    [2]
    Miller S E, Garrick S C.Nanoparticle coagulation in a planar jet[J].Aerosol Sci Technol,2004,38(1):79-89. doi: 10.1080/02786820490247669
    [3]
    Garrick S C, Lehtinen K E J,Zachariah M R.Nanoparticle coagulation via a Navier-Stokes/nodal methodology: evolution of the particle field[J].J Aerosol Sci,2006,37(5):555-576. doi: 10.1016/j.jaerosci.2005.04.010
    [4]
    Lin J Z, Chan T L,Liu S,et al.Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J].Internat J Nonlinear Sci Numer Simul,2007,8(1):45-54.
    [5]
    Smoluchowski V.Versuch einer mathematischen theorie der Koagulationskinetik kollider losungen[J].Z Phys Chem,1917,92:129-168.
    [6]
    Frenklach M.Dynamics of discrete distribution for smoluchowski coagulation model[J].J Colloid Interface Sci,1985,108(1):237-242. doi: 10.1016/0021-9797(85)90256-5
    [7]
    Hulbert H M, Katz S.Some problems in particle technology: a statistical mechanical formulation[J].Chem Eng Sci,1964,19(8):555-574. doi: 10.1016/0009-2509(64)85047-8
    [8]
    Smith E J,Jordan L M.Mathematical and graphical interpretation of the lognormal law for particle size distribution analysis[J].J Colloid Interface Sci,1964,19(6):549-559.
    [9]
    Frenklach M, Harris S J.Aerosol dynamics modeling using the method of moments[J].J Colloid Interface Sci,1987,118(11):252-261. doi: 10.1016/0021-9797(87)90454-1
    [10]
    Friedlander S K.Dynamics of aerosol formation by chemical reaction[J].Ann NY Acad Sci,1983,404(1):354-364. doi: 10.1111/j.1749-6632.1983.tb19497.x
    [11]
    Pratsinis S E.Simultaneous nucleation, condensation, and coagulation in aerosol reactor[J].J Colloid Interface Sci,1988,124(2):416-417. doi: 10.1016/0021-9797(88)90180-4
    [12]
    McGraw R.Description of aerosol dynamics by the quadrature method of moments[J].Aerosol Sci Technol,1997,27(2):255-265. doi: 10.1080/02786829708965471
    [13]
    Settumba N,Garrick S C. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method[J].J Aerosol Sci,2003,34(1):149-167. doi: 10.1016/S0021-8502(02)00147-7
    [14]
    Talukdar S S,Swihart M T.Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods[J].J Aerosol Sci,2004,35(7):889-908. doi: 10.1016/j.jaerosci.2004.02.004
    [15]
    Diemer R B,Olson J H. A moment methodology for coagulation and breakage problems: Part 1-analytical solution of the steady-state population balance[J].Chem Eng Sci,2002,57(12):2193-2209. doi: 10.1016/S0009-2509(02)00111-2
    [16]
    Pratsinis S E,Kim K S.Particle coagulation, diffusion and thermophoresis in laminar tube flows[J].J Aerosol Sci,1989,20(1):101-111. doi: 10.1016/0021-8502(89)90034-7
    [17]
    Pyykonen J, Jokiniemi J. Computational fluid dynamics based sectional aerosol modeling schemes[J].J Aerosol Sci,2000,31(5):531-550. doi: 10.1016/S0021-8502(99)00546-7
    [18]
    Terry D A, McGraw R,Rangel R H. Method of moments solution for a laminar flow aerosol reactor model[J].Aerosol Sci Technol,2001,34(4):353-362.
    [19]
    Smagorinsky J.General circulation experiments with the primitive equation[J].Mon Weather Rev,1963,91(3):99-164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [20]
    Lilly D K.A proposed modification of the Germano subgrid scale closeure method[J].Phys Fluids A,1992,4(3):633-635. doi: 10.1063/1.858280
    [21]
    Friedlander S K.Smoke,Dust and Haze: Fundamentals of Aerosol Behavior[M].New York,N Y:Wiley,1977.
    [22]
    Suh S M, Zachariah M R,Girshick S L.Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics[J].J Vac Sci Technol A,2001,19(3):940-951. doi: 10.1116/1.1355757
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2551) PDF downloads(733) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return