Abstract:
Under axisymmetric conditions, a mechanics model for double-layer plates with two-way spring interlayers on elastic foundations was built. The Hankel transform method was used to derive the general analytical solutions of the infinite double-layer plates respectively on the Winkler foundation, the two-parameter foundation and the elastic half-space foundation under arbitrary axisymmetric load. Then the calculating formulae for the deflection, bending moment, shearing force and the interlayer reaction force and displacement were given. The analytical solutions were applied to study the effects of the interlayer conditions on the deflection and bending moment of the double-layer plates, calculate the positions of neutral axes of the upper and lower plates, and discuss the specific values of the interlayer spring coefficients. The results show that, 1) with the increase of the vertical spring coefficient, the deflection and bending stress of the upper plate decrease, while those of the lower plate increase; on the other hand, with the increase of the horizontal friction parameter, those of both the upper and lower plates decrease; 2) when the shearing coefficient and compressibility of the double-layer plates are given values of 2/3 and 3/5 respectively, the effects of shearing and compression could be well considered; 3) the neutral axes’ positions of the upper and lower plates are changeable, but respectively approach the center planes of the upper and lower plates with the increase of the distance from the load center.