2023, 44(9): 1112-1121.
doi: 10.21656/1000-0887.440051
Abstract:
Analytical solutions, with unique research value, can serve as benchmarks for empirical formulas and numerical methods, a tool for rapid parameter analysis and optimization, and a theoretical basis for experimental designs. Conventional analytical methods, e.g., the Lévy solution method, are only applicable to mechanical problems of plates and shells with opposite simply-supported edges, which, however, may fail to obtain analytical solutions for the issues with complex boundary constraints. In recent years, the finite integral transform method for plate and shell problems was developed to deal with non-Lévy-type plates and shells, but it is still infeasible to solve the mixed boundary constrains-induced complex boundary value problems of higher-order partial differential equations. Herein, for the first time, the finite integral transform method was combined with the sub-domain decomposition technique to solve the free vibrations of rectangular thin plates with mixed boundary constraints. The rectangular plate was first divided into 2 sub-domains according to the mixed boundary constraints, and the 2 sub-domains were solved analytically with the finite integral transform method. Finally, the continuity conditions were introduced to obtain the analytical solution of the original problem. Based on the side spot-welded cantilever plates commonly used in engineering, the free vibration problem of a rectangular thin plate with 1 edge subjected to clamped-simply supported constraints and the other 3 edges free, was analyzed. The obtained natural frequencies and mode shapes are in good agreement with those from the finite element method as well as the solutions in literature, thus verifying the accuracy of the proposed method. The solution procedure of the finite integral transform method can be implemented based on the governing equations without any assumption of the solution form. Therefore, this strict analytical method is widely applicable to complex boundary value problems of higher-order partial differential equations for such mechanical problems of plates and shells.