GE Zhi-xin, CHEN Xian-jiang, CHEN Song-lin. A Class of 2-DOF Coupled Systems With Fractional-Order Derivatives[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1300-1308. doi: 10.21656/1000-0887.370333
Citation: GE Zhi-xin, CHEN Xian-jiang, CHEN Song-lin. A Class of 2-DOF Coupled Systems With Fractional-Order Derivatives[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1300-1308. doi: 10.21656/1000-0887.370333

A Class of 2-DOF Coupled Systems With Fractional-Order Derivatives

doi: 10.21656/1000-0887.370333
  • Received Date: 2016-11-01
  • Rev Recd Date: 2017-09-14
  • Publish Date: 2017-11-15
  • The vibration problems of a class of 2-DOF coupled systems with fractional-order derivatives and small perturbations were studied. First, the asymptotic solutions of the vibration equations with Riemann-Liouville fractional-order derivatives were constructed. With the multi-scale method, the solvability conditions for the asymptotic solutions to the vibration problems were obtained. Then, under the solvability conditions for the solutions, the influences of the fractional-order derivatives, their coefficients and the small parameters on the vibration were discussed, and the asymptotic solutions were also given. Finally, the stability properties of the 1st-order approximate solutions were studied. It is found that all the steady-state solutions are stable.
  • loading
  • [1]
    胡海岩. 机械振动基础[M]. 北京: 北京航空航天大学出版社, 2005.(HU Hai-yan. Fundamentals of Mechanical Vibration [M]. Beijing: Beihang University Press, 2005.(in Chinese))
    [2]
    Nayfeh A H. Introduction to Perturbation Techniques [M]. Shanghai: Shanghai Translation Publishing House, 1990.〖JP〗
    [3]
    刘灿昌, 岳书常, 许英姿, 等. 参数激励非线性振动时滞反馈最优化控制[J]. 振动与冲击, 2015,34(20): 6-9.(LIU Can-chang, YUE Shu-chang, XU Ying-zi, et al. Optimal control of parametric excitated nonlinear vibration system with delayed linear and nonlinear feedback controllers[J]. Journal of Vibration and Shock,2015,34(20): 6-9.(in Chinese))
    [4]
    鲍四元, 邓子辰. 分数阶振子方程基于变分迭代的近似解析解序列[J]. 应用数学和力学, 2015,36(1): 48-60.(BAO Si-yuan, DENG Zi-chen. The approximate analytical solution sequence for fractional oscillation equations based on the fractional variational iteration method[J]. Applied Mathematics and Mechanics,2015,36(1): 48-60.(in Chinese))
    [5]
    张晓棣, 陈文. 三种分形和分数阶导数阻尼振动模型的比较研究[J]. 固体力学学报, 2009,30(5): 496-503.(ZHANG Xiao-di, CHEN Wen. Comparison of three fractal and fractional derivative damped oscillation models[J]. Chinese Journal of Solid Mechanics,2009,30(5): 496-503.(in Chinese))
    [6]
    HU Shuai, CHEN Wen, GOU Xiao-fan. Modal analysis of fractional derivative damping model of frequency-dependent viscoelastic soft matter[J]. Advances in Vibration Engineering,2011,10(3): 187-196.
    [7]
    CAI Wei, CHEN Wen, ZHANG Xiao-di. A Matlab toolbox for positive fractional time derivative modeling of arbitrarily frequency-dependent viscosity[J]. Journal of Vibration and Control,2014,20(7): 1009-1016.
    [8]
    Leung A Y T, Gou Z J, Yang H X. Transition curves and bifurcations of a class of fractional Mathieu-type equations [J]. International Journal of Bifurcation and Chaos,2012,22(11): 1250275.
    [9]
    Mesbahi A, Haeri M, Nazari M, et al. Fractional delayed damped Mathieu equation[J]. International Journal of Control,2015,88(3): 622-630.
    [10]
    陈林聪, 李海锋, 李钟慎, 等. 宽带噪声激励下含分数阶导数的Duffing-van del Pol振子的稳态响应[J]. 中国科学: 物理学 力学 天文学, 2013,43(5): 670-677.(CHEN Lin-cong, LI Hai-feng, LI Zhong-shen, et al. Stationary response of Duffing-van del Pol oscillator with fractional derivative under wide-band noise excitations[J]. Science China: Physics, Mechanics & Astronomy, 2013,43(5): 670-677.(in Chinese))
    [11]
    杨建华, 刘厚广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究[J]. 物理学报, 2013,62(18): 180503.(YANG Jian-hua, LIU Hou-guang, CHENG Gang. The pitchfork bifurcation and vibrational resonance in a quintic oscillator[J]. Acta Physica Sinica,2013,62(18): 180503.(in Chinese))
    [12]
    张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振[J]. 物理学报, 2014,63(1): 010506.(ZHANG Lu, XIE Tian-ting, LUO Meng-kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals[J]. Acta Physica Sinica,2014,63(1): 010506.(in Chinese))
    [13]
    韦鹏, 申永军, 杨绍普. 分数阶van der Pol振子的超谐共振[J]. 物理学报, 2014,63(1): 010503.(WEI Peng, SHEN Yong-jun, YANG Shao-pu. Super-harmonic resonance of fractional-order van der Pol oscillator[J]. Acta Physica Sinica,2014,63(1): 010503.(in Chinese))
    [14]
    申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析[J]. 物理学报, 2012,61(11): 110505.(SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative[J]. Acta Physica Sinica,2012,61(11): 110505.(in Chinese))
    [15]
    申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ)[J]. 物理学报, 2012,61(15): 150503.(SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative(Ⅱ)[J]. Acta Physica Sinica,2012,61(15): 150503.(in Chinese))
    [16]
    葛志新, 陈咸奖. 一类含有两参数的小迟滞方程的渐近解[J]. 应用数学学报, 2014,37(3): 407-413.(GE Zhi-xin, CHEN Xian-jiang. The asymptotic solution of a class of small delay equations with two parameters[J]. Acta Mathematicae Applicatae Sinica,2014,37(3): 407-413.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1269) PDF downloads(542) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return