Citation: | NING Li-zhong, QU Ya-wei, NING Bi-bo, YUAN Zhe, TIAN Wei-li, LIU Shuang. A New-Type Counterpropagating Wave Pattern of Vertical Mirror Symmetry in Binary Fluid Convection[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1230-1239. doi: 10.21656/1000-0887.370367 |
[1] |
Cross M C, Hohenberg P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics,1993,65(3): 851-1112.
|
[2] |
Getling A V. Rayleigh-Bénard Convection [M]. London: World Scientific, 1998.
|
[3] |
Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability [M]. Oxford: Clarendon Press, 1961.
|
[4] |
Rabinovich M I, Ezersky A B, Weidman P D. The Dynamics of Patterns [M]. Singapore: World Scientific, 2000.
|
[5] |
Walden R W, Kolodner P, Passner A, et al. Traveling waves and chaos in convection in binary fluid mixtures[J]. Physical Review Letters,1985,55(5): 496-499.
|
[6] |
Niemela J J, Ahlers G, Cannell D S. Localized traveling-wave states in binary-fluid convection[J]. Physical Review Letters,1990,64(12): 1365-1368.
|
[7] |
Harada Y, Masuno Y, Sugihara K. Convective motion in space and time: defect mediated localized traveling waves[J]. Vistas in Astronomy,1993,37: 107-110.
|
[8] |
Ma Y-P, Burke J, Knobloch E. Defect-mediated snaking: a new growth mechanism for localized structures[J]. Physica D: Nonlinear Phenomena,2010,239(19): 1867-1883.
|
[9] |
Watanabe T, Iima M, Nishiura Y. Spontaneous formation of travelling localized structures and their asymptotic behaviours in binary fluid convection[J]. Journal of Fluid Mechanics,2012,712: 219-243.
|
[10] |
Muller H W, Tveitereid M, Trainoff S. Rayleigh-Bénard problem with imposed weak through-flow: two coupled Ginzburg-Landau equations[J]. Physical Review E,1993,48(1): 263-272.
|
[11] |
王卓运, 宁利中, 王娜, 等. 基于振幅方程组的行波对流的数值模拟[J]. 西安理工大学学报, 2014,30(2): 163-169.(WANG Zhuo-yun, NING Li-zhong, WANG Na, et al. Numerical simulation of traveling wave convection based on amplitude equations[J]. Journal of Xi’an University of Technology,2014,30(2): 163-169.(in Chinese))
|
[12] |
Yahata H. Travelling convection rolls in a binary fluid mixture[J]. Progress of Theoretical Physics,1991,85(5): 933-937.
|
[13] |
Barten W, Lucke M, Kamps M. Localized traveling-wave convection in binary-fluid mixtures[J]. Physical Review Letters,1991,66(20): 2621-2624.
|
[14] |
Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures I: extended traveling-wave and stationary states[J]. Physical Review E,1995,51(6): 5636-5661.
|
[15] |
Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures II: localized traveling waves[J]. Physical Review E,1995,51(6): 5662-5682.
|
[16] |
NING Li-zhong, Harada Y, Yahata H. Localized traveling waves in binary fluid convection[J]. Progress of Theoretical Physics,1996,96(4): 669-682.
|
[17] |
NING Li-zhong, Harada Y, Yahata H. Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell[J]. Progress of Theoretical Physics,1997,97(6): 831-848.
|
[18] |
NING Li-zhong, Harada Y, Yahata H. Formation process of the traveling-wave state with a defect in binary fluid convection[J]. Progress of Theoretical Physics,1997,98(3): 551-566.
|
[19] |
NING Li-zhong, Harada Y, Yahata H, et al. Fully-developed traveling wave convection in binary fluid mixtures with lateral flows[J]. Progress of Theoretical Physics,2001,106(3): 503-512.
|
[20] |
宁利中, 齐昕, 周洋, 等. 混合流体Rayleigh-Benard 行波对流中的缺陷结构[J]. 物理学报, 2009,58(4): 2528-2534.(NING Li-zhong, QI Xin, ZHOU Yang, et al. Defect structures of Rayleigh-Benard travelling wave convection in binary fluid mixtures[J]. Acta Physica Sinica,2009,58(4): 2528-2534.(in Chinese))
|
[21] |
宁利中, 余荔, 袁喆, 等. 沿混合流体对流分叉曲线上部分支行波斑图的演化[J]. 中国科学(G辑: 物理学 力学 天文学), 2009,39(5): 746-751.(NING Li-zhong, YU Li, YUAN Zhe, et al. Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J]. Science in China(Series G: Physics, Mechanics & Astronomy),2009,39(5): 746-751.(in Chinese))
|
[22] |
宁利中, 王娜, 袁喆, 等. 分离比对混合流体Rayleigh-Bénard对流解的影响[J]. 物理学报, 2014,63(10): 104401. doi: 10.7498/aps.63.104401.(NING Li-zhong, WANG Na, YUAN Zhe, et al. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J].Acta Physica Sinica,2014,63(10): 104401. doi: 10.7498/aps.63.104401.(in Chinese))
|
[23] |
宁利中, 王永起, 袁喆, 等. 两种不同结构的混合流体局部行波对流斑图[J]. 科学通报, 2016,61(8): 872-880.(NING Li-zhong, WANG Yong-qi, YUAN Zhe, et al. Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J]. Chinese Science Bulletin,2016,61(8): 872-880.(in Chinese))
|
[24] |
宁利中, 胡彪, 宁碧波, 等. Poiseuille-Rayleigh-Bénard流动中对流斑图的分区和成长[J]. 物理学报, 2016,65(21): 214401. doi: 10.7498/aps.65.214401.(NING Li-zhong, HU Biao, NING Bi-bo, et al. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J]. Acta Physica Sinica,2016,65(21): 214401. doi: 10.7498/aps.65.214401.(in Chinese))
|
[25] |
NING Li-zhong, QI Xin, YUAN Zhe, et al. A counter propagating wave state with a periodically horizontal motion of defects[J]. Journal of Hydrodynamics,2008,20(5): 567-573.
|
[26] |
胡军, 尹协远. 双流体Poiseuille-Rayleigh-Bénard流动中脉冲扰动的时空演化[J]. 中国科学技术大学学报, 2007,37(10): 1267-1272.(HU Jun, YIN Xie-yuan. Spatio-temporal evolution of pulse like perturbation for Poiseuille-Rayleigh-Bénard flows in binary fluids[J]. Journal of University of Science and Technology of China,2007,37(10): 1267-1272.(in Chinese))
|
[27] |
HU Jun, YIN Xie-yuan. Two-dimensional simulation of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect[J]. Progress in Nature Science,2007,17(12): 1389-1396.
|
[28] |
ZHAO Bing-xin, TIAN Zhen-fu. Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers[J]. Physics of Fluids,2015,27: 074102.
|
[29] |
Taraut A V, Smorodin B L, Lucke M. Collisions of localized convection structures in binary fluid mixtures[J]. New Journal of Physics,2012,14(9): 093055.
|
[30] |
Mercader I, Batiste O, Alonso A, et al. Travelling convectons in binary fluid convection[J]. Journal of Fluid Mechanics,2013,722: 240-266.
|
[31] |
Mercader I, Batiste O, Alonso A, et al. Convectons in periodic and bounded domains[J]. Fluid Dynamics Research,2010,42: 025505. doi: 10.1088/0169-5983/42/2/025505.
|
[32] |
Mercader I, Batiste O, Alonso A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606.
|
[33] |
Batiste O, Knobloch E, Alonso A, et al. Spatially localized binary-fluid convection[J]. Journal of Fluid Mechanics,2006,560: 149-158.
|
[34] |
Bensimon D, Kolodner P, Surko C M, et al. Competing and coexisting dynamical states of travelling-wave convection in an annulus[J]. Journal of Fluid Mechanics,1990,217: 441-467.
|
[35] |
胡彪, 宁利中, 宁碧波, 等. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017,38(10): 1103-1111.(HU Biao, NING Li-zhong, NING Bi-bo, et al. Effects of horizontal flow on perturbation growth and convection periodicity[J]. Applied Mathematics and Mechanics,2017,38(10): 1103-1111.(in Chinese))
|