Citation: | NING Li-zhong, QU Ya-wei, NING Bi-bo, YUAN Zhe, TIAN Wei-li, LIU Shuang. A New-Type Counterpropagating Wave Pattern of Vertical Mirror Symmetry in Binary Fluid Convection[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1230-1239. doi: 10.21656/1000-0887.370367 |
[1] |
Cross M C, Hohenberg P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics,1993,65(3): 851-1112.
|
[2] |
Getling A V. Rayleigh-Bénard Convection [M]. London: World Scientific, 1998.
|
[3] |
Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability [M]. Oxford: Clarendon Press, 1961.
|
[4] |
Rabinovich M I, Ezersky A B, Weidman P D. The Dynamics of Patterns [M]. Singapore: World Scientific, 2000.
|
[5] |
Walden R W, Kolodner P, Passner A, et al. Traveling waves and chaos in convection in binary fluid mixtures[J]. Physical Review Letters,1985,55(5): 496-499.
|
[6] |
Niemela J J, Ahlers G, Cannell D S. Localized traveling-wave states in binary-fluid convection[J]. Physical Review Letters,1990,64(12): 1365-1368.
|
[7] |
Harada Y, Masuno Y, Sugihara K. Convective motion in space and time: defect mediated localized traveling waves[J]. Vistas in Astronomy,1993,37: 107-110.
|
[8] |
Ma Y-P, Burke J, Knobloch E. Defect-mediated snaking: a new growth mechanism for localized structures[J]. Physica D: Nonlinear Phenomena,2010,239(19): 1867-1883.
|
[9] |
Watanabe T, Iima M, Nishiura Y. Spontaneous formation of travelling localized structures and their asymptotic behaviours in binary fluid convection[J]. Journal of Fluid Mechanics,2012,712: 219-243.
|
[10] |
Muller H W, Tveitereid M, Trainoff S. Rayleigh-Bénard problem with imposed weak through-flow: two coupled Ginzburg-Landau equations[J]. Physical Review E,1993,48(1): 263-272.
|
[11] |
王卓运, 宁利中, 王娜, 等. 基于振幅方程组的行波对流的数值模拟[J]. 西安理工大学学报, 2014,30(2): 163-169.(WANG Zhuo-yun, NING Li-zhong, WANG Na, et al. Numerical simulation of traveling wave convection based on amplitude equations[J]. Journal of Xi’an University of Technology,2014,30(2): 163-169.(in Chinese))
|
[12] |
Yahata H. Travelling convection rolls in a binary fluid mixture[J]. Progress of Theoretical Physics,1991,85(5): 933-937.
|
[13] |
Barten W, Lucke M, Kamps M. Localized traveling-wave convection in binary-fluid mixtures[J]. Physical Review Letters,1991,66(20): 2621-2624.
|
[14] |
Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures I: extended traveling-wave and stationary states[J]. Physical Review E,1995,51(6): 5636-5661.
|
[15] |
Barten W, Lücke M, Kamps M, et al. Convection in binary fluid mixtures II: localized traveling waves[J]. Physical Review E,1995,51(6): 5662-5682.
|
[16] |
NING Li-zhong, Harada Y, Yahata H. Localized traveling waves in binary fluid convection[J]. Progress of Theoretical Physics,1996,96(4): 669-682.
|
[17] |
NING Li-zhong, Harada Y, Yahata H. Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell[J]. Progress of Theoretical Physics,1997,97(6): 831-848.
|
[18] |
NING Li-zhong, Harada Y, Yahata H. Formation process of the traveling-wave state with a defect in binary fluid convection[J]. Progress of Theoretical Physics,1997,98(3): 551-566.
|
[19] |
NING Li-zhong, Harada Y, Yahata H, et al. Fully-developed traveling wave convection in binary fluid mixtures with lateral flows[J]. Progress of Theoretical Physics,2001,106(3): 503-512.
|
[20] |
宁利中, 齐昕, 周洋, 等. 混合流体Rayleigh-Benard 行波对流中的缺陷结构[J]. 物理学报, 2009,58(4): 2528-2534.(NING Li-zhong, QI Xin, ZHOU Yang, et al. Defect structures of Rayleigh-Benard travelling wave convection in binary fluid mixtures[J]. Acta Physica Sinica,2009,58(4): 2528-2534.(in Chinese))
|
[21] |
宁利中, 余荔, 袁喆, 等. 沿混合流体对流分叉曲线上部分支行波斑图的演化[J]. 中国科学(G辑: 物理学 力学 天文学), 2009,39(5): 746-751.(NING Li-zhong, YU Li, YUAN Zhe, et al. Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J]. Science in China(Series G: Physics, Mechanics & Astronomy),2009,39(5): 746-751.(in Chinese))
|
[22] |
宁利中, 王娜, 袁喆, 等. 分离比对混合流体Rayleigh-Bénard对流解的影响[J]. 物理学报, 2014,63(10): 104401. doi: 10.7498/aps.63.104401.(NING Li-zhong, WANG Na, YUAN Zhe, et al. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J].Acta Physica Sinica,2014,63(10): 104401. doi: 10.7498/aps.63.104401.(in Chinese))
|
[23] |
宁利中, 王永起, 袁喆, 等. 两种不同结构的混合流体局部行波对流斑图[J]. 科学通报, 2016,61(8): 872-880.(NING Li-zhong, WANG Yong-qi, YUAN Zhe, et al. Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J]. Chinese Science Bulletin,2016,61(8): 872-880.(in Chinese))
|
[24] |
宁利中, 胡彪, 宁碧波, 等. Poiseuille-Rayleigh-Bénard流动中对流斑图的分区和成长[J]. 物理学报, 2016,65(21): 214401. doi: 10.7498/aps.65.214401.(NING Li-zhong, HU Biao, NING Bi-bo, et al. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J]. Acta Physica Sinica,2016,65(21): 214401. doi: 10.7498/aps.65.214401.(in Chinese))
|
[25] |
NING Li-zhong, QI Xin, YUAN Zhe, et al. A counter propagating wave state with a periodically horizontal motion of defects[J]. Journal of Hydrodynamics,2008,20(5): 567-573.
|
[26] |
胡军, 尹协远. 双流体Poiseuille-Rayleigh-Bénard流动中脉冲扰动的时空演化[J]. 中国科学技术大学学报, 2007,37(10): 1267-1272.(HU Jun, YIN Xie-yuan. Spatio-temporal evolution of pulse like perturbation for Poiseuille-Rayleigh-Bénard flows in binary fluids[J]. Journal of University of Science and Technology of China,2007,37(10): 1267-1272.(in Chinese))
|
[27] |
HU Jun, YIN Xie-yuan. Two-dimensional simulation of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect[J]. Progress in Nature Science,2007,17(12): 1389-1396.
|
[28] |
ZHAO Bing-xin, TIAN Zhen-fu. Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers[J]. Physics of Fluids,2015,27: 074102.
|
[29] |
Taraut A V, Smorodin B L, Lucke M. Collisions of localized convection structures in binary fluid mixtures[J]. New Journal of Physics,2012,14(9): 093055.
|
[30] |
Mercader I, Batiste O, Alonso A, et al. Travelling convectons in binary fluid convection[J]. Journal of Fluid Mechanics,2013,722: 240-266.
|
[31] |
Mercader I, Batiste O, Alonso A, et al. Convectons in periodic and bounded domains[J]. Fluid Dynamics Research,2010,42: 025505. doi: 10.1088/0169-5983/42/2/025505.
|
[32] |
Mercader I, Batiste O, Alonso A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606.
|
[33] |
Batiste O, Knobloch E, Alonso A, et al. Spatially localized binary-fluid convection[J]. Journal of Fluid Mechanics,2006,560: 149-158.
|
[34] |
Bensimon D, Kolodner P, Surko C M, et al. Competing and coexisting dynamical states of travelling-wave convection in an annulus[J]. Journal of Fluid Mechanics,1990,217: 441-467.
|
[35] |
胡彪, 宁利中, 宁碧波, 等. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017,38(10): 1103-1111.(HU Biao, NING Li-zhong, NING Bi-bo, et al. Effects of horizontal flow on perturbation growth and convection periodicity[J]. Applied Mathematics and Mechanics,2017,38(10): 1103-1111.(in Chinese))
|
[1] | CHEN Long, XIAO Xia, ZHANG Li, QI Haiyang. Surface Acoustic Wave Characterization of Equivalent Young's Moduli for Patterned Films[J]. Applied Mathematics and Mechanics, 2023, 44(4): 381-393. doi: 10.21656/1000-0887.430050 |
[2] | ZHUANG Xin, LIU Fujun, SUN Yanping, WANG Huiling. High Accuracy Numerical Simulation of Non-Isothermal Viscoelastic Polymer Fluid Past a Cylinder[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1380-1391. doi: 10.21656/1000-0887.430127 |
[3] | ZHANG Zhen-yu, ZHAO Ning, ZHONG Wei, WANG Long, XU Bo-feng. Progresses in Application of Computational Fluid Dynamics to Large Scale Wind Turbine Aerodynamics[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1048-1058. doi: 10.3879/j.issn.1000-0887.2013.10.005 |
[4] | LUO Zhi-qiang, CHEN Zhi-min. Sloshing Simulation of Standing Wave With a Time-Independent Finite Difference Method for Euler Equations[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1378-1390. doi: 10.3879/j.issn.1000-0887.2011.11.011 |
[5] | LIU Xiao-hui, YAN Bo, ZHANG Hong-yan, ZHOU Song. Nonlinear Numerical Simulation Method for Galloping of Iced Conductor[J]. Applied Mathematics and Mechanics, 2009, 30(4): 457-468. |
[6] | ZHU Wei-yu, LU Tao, JIANG Pei-xue, GUO Zhi-jun, WANG Kui-sheng. Large Eddy Simulation of Hot and Cold Fluids Mixing in a T-Junction for Prediction of Thermal Fluctuations[J]. Applied Mathematics and Mechanics, 2009, 30(11): 1295-1306. doi: 10.3879/j.issn.1000-0887.2009.11.004 |
[7] | HE Ying, HAN Bo. Wavelet Finite-Difference Method for the Numerical Simulation of Wave Propagation in Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1355-1346. |
[8] | CHENG Mu-lin, MIAO Wen-bo, ZHONG Chang-sheng. Numerical Simulation of Insect Flight[J]. Applied Mathematics and Mechanics, 2006, 27(5): 533-538. |
[9] | ZENG Yu-hong, HUAI Wen-xin. Numerical Study on the Stability and Mixing of Vertical Round Buoyant Jet in Shallow Water[J]. Applied Mathematics and Mechanics, 2005, 26(1): 83-91. |
[10] | HAN Zhi-wu, LIU Cai, LU Wei-ping. Numerical Simulation of Roll Forming for Channel Section With Outer Edge[J]. Applied Mathematics and Mechanics, 2002, 23(3): 292-298. |
[11] | XU Sheng-li, YUE Peng-tao, HAN Zhao-yuan. Study on the Fuel Air Mixing Induced by a Shock Wave Propagating Into a H2-Air Interface[J]. Applied Mathematics and Mechanics, 2001, 22(4): 404-410. |
[12] | Yuan Yirang, Zhao Weidong, Cheng Aijie, Han Yuji. Numerical Simulation Analysis for Migration Accumulation of Oil and Water[J]. Applied Mathematics and Mechanics, 1999, 20(4): 386-392. |
[13] | Chen Shuifu, Sun Bingnan, Tang Jinchun. An Extended k-ε Model for Numerical Simulation of Wind Flow Around Buildings[J]. Applied Mathematics and Mechanics, 1998, 19(1): 88-94. |
[14] | Yu Zhaosheng, Lin Jianzhong. Numerical Research on the Coherent Structure in the Viscoelastic Second-Order Mixing Layers[J]. Applied Mathematics and Mechanics, 1998, 19(8): 671-677. |
[15] | Guo Jiahong, Xu Hongyi. Numerical Simulation of Three Dimensional Turbulent Flow in Suddenly Expanded Rectangular Duct[J]. Applied Mathematics and Mechanics, 1996, 17(4): 349-356. |
[16] | Liu Baosheng, Chen Dapeng, Liu Yu. A Non-lncremental Time-Space Algorithm for Numerical Simulation of Forming Process[J]. Applied Mathematics and Mechanics, 1996, 17(11): 961-968. |
[17] | Yuan Yi-rang, Wang Wen-qia, Yang Dan-ping, Han Yu-ji, Yang Cheng-shun. Numerical Simulation for Evolutionary History of Three-Dimensional Basin[J]. Applied Mathematics and Mechanics, 1994, 15(5): 409-420. |
[18] | Wu Qing-song, Wang Bo-yi. Numerical Simulation of 1-D Unsteady Two-Phase Flows with Shocks[J]. Applied Mathematics and Mechanics, 1992, 13(7): 605-611. |
[19] | Feng Tong, Chien wei-zang, Sun Hou-jun. The Numerical Simulation of Turbulent Flows of Newtonian and a Sort of Non-Newtonian Fluid in 180-Degree Square Sectioned Bend[J]. Applied Mathematics and Mechanics, 1991, 12(1): 1-10. |
[20] | Li Guo-yan. Numerical Simulation of the Flow Field in a Thermal Plasma Reactor[J]. Applied Mathematics and Mechanics, 1990, 11(12): 1093-1097. |
1. | 宁利中,张迪,宁碧波,李开继,田伟利,滕素芬. 侧向局部加热对流的周期性. 应用数学和力学. 2020(02): 125-133 . ![]() | |
2. | 宁利中,张珂,宁碧波,吴昊,田伟利. 侧向加热腔体中的多圈型对流斑图. 应用数学和力学. 2020(03): 250-259 . ![]() | |
3. | 宁利中,吴昊,宁碧波,田伟利,宁景昊. 倾斜层中的对流斑图及其临界条件. 应用数学和力学. 2019(04): 398-407 . ![]() |