FAN Tian-you, TANG Zhi-yi. D Generalized Hydrodynamics of Soft-Matter Quasicrystals[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1195-1207. doi: 10.21656/1000-0887.380063
Citation: FAN Tian-you, TANG Zhi-yi. D Generalized Hydrodynamics of Soft-Matter Quasicrystals[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1195-1207. doi: 10.21656/1000-0887.380063

D Generalized Hydrodynamics of Soft-Matter Quasicrystals

doi: 10.21656/1000-0887.380063
Funds:  The National Natural Science Foundation of China(11272053)
  • Received Date: 2017-03-16
  • Rev Recd Date: 2017-10-09
  • Publish Date: 2017-11-15
  • The 3D generalized hydrodynamics of soft-matter quasicrystals was investigated, and the governing equations for observed and possibly observed soft-matter quasicrystals were derived. The solving procedure for the equations was discussed briefly. Some results obtained reveal the gigantic dissimilarities between soft-matter quasicrystals and solid ones.
  • loading
  • [1]
    范天佑. 软物质准晶广义流体动力学方程组[J]. 应用数学和力学, 2016,37(4): 331-344.(FAN Tian-you. Equation systems of generalized hydrodynamics for soft-matter quasicrystals[J]. Applied Mathematics and Mechanics,2016,37(4): 331-344.(in Chinese))
    [2]
    范天佑. 软物质第二类二维准晶广义流体动力学[J]. 应用数学和力学, 2017,38(2): 189-199.(FAN Tian-you. Generalized hydrodynamics for second 2D soft-matter quasicrystals[J]. Applied Mathematics and Mechanics,2017,38(2): 189-199.(in Chinese))
    [3]
    ZENG Xiang-bing, Ungar G, LIU Yong-song, et al. Supramolecular dendritic liquid quasicrystals[J]. Nature,2004,428: 157-160.
    [4]
    Takano K, Kawashima W, Noro A, et al. A mesoscopic archimedian tiling having a complexity in polymeric stars[J]. Journal of Polymer Science Part B: Polymer Physics,2005,43(18): 2427-2432.
    [5]
    Talapin D V, Shevechenko E V, Bodnarchuk M I, et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices[J]. Nature,2009,461: 964-967.
    [6]
    Fischer S, Exner A, Zielske K, et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(5): 1810-1814.
    [7]
    YUE Kan, HUANG Ming-jun, Marson R, et al. Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(50): 14195-14200.
    [8]
    Lubensky T C, Ramaswamy S, Toner J. Hydrodynamics of icosahedral quasicrystals[J]. Physical Review B: Condensed Matter,1985,32(11): 7444-7452.
    [9]
    Lubensky T C. Symmetry, elasticity and hydrodynamics of quasicrystals[M]// Introduction to Quasicrystals . Jaric V M, ed. Boston: Academic Press, 1988: 199-280.
    [10]
    Lifshitz E M, Petaevskii L P. Statistical Physics Part 〖STBX〗2: Landau and Lifshitz Course of Theoretical Physics [M]. Vol 9. Oxford: Pergamon Press, 1980.
    [11]
    Wensink H H. Equation of state of a dense columnar liquid crystal[J]. Physical Review Letters,2004,93: 157801.
    [12]
    Dzyaloshinskii I E, Volovick G E. Poisson brackets in condensed matter physics[J]. Annals of Physics,1980,125(1): 67-97.
    [13]
    HU Cheng-zheng, WANG Ren-hui, DING Di-hua. Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals[J]. Reports on Progress in Physics,2000,63(1): 1-39.
    [14]
    杨顺华, 丁棣华. 晶体位错理论基础[M]. 第2卷. 北京: 科学出版社, 1998.(YANG Shun-hua, DING Di-hua. Theoretical Foundations of Crystal Dislocation [M]. Vol 2. Beijing: Science Press, 1998.(in Chinese))
    [15]
    FAN Tian-you. Mathematical Theory of Elasticity of Quasicrystals and Its Applications [M]. 2nd ed. Beijing: Science Press, 2016.
    [16]
    范天佑. 固体与软物质准晶数学弹性与相关理论及应用[M]. 北京: 北京理工大学出版社, 2014.(FAN Tian-you. Mathematical Theory of Elasticity and Relevant Topics of Solid and Softmatter Quasicrystals and Its Applications [M]. Beijing: Beijing Institute of Technology Press, 2014.(in Chinese))
    [17]
    Li X F, Fan T Y. Dislocations in the second kind two-dimensional quasicrystals of soft matter[J]. Physica B: Condensed Matter,2016,502(1): 175-180.
    [18]
    CHENG Hui, FAN Tian-you, WEI Hao. Solutions for hydrodynamics of solid quasicrystals with 5- and 10-fold symmetry[J]. Applied Mathematics and Mechanics(English Edition),2016,37(10): 1393-1404.
    [19]
    Metere A, Oleynikov P, Dzugutov M, et al. A smectic dodecagonal quasicrystal[J]. Soft Matter,2016,12(43): 8869-8876.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1210) PDF downloads(627) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return