Citation: | SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, CHAO Ying. Analytic Solution for the Flow of a Micropolar Fluid Through a Semi-Porous Channel With an Expanding or Contracting Wall[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1027-1035. doi: 10.3879/j.issn.1000-0887.2010.09.003 |
[1] |
Uchida S, Aoki H. Unsteady flows in a semi-infinite contracting or expanding pipe[J]. Journal of Fluid Mechanics, 1977, 82(2): 371-387. doi: 10.1017/S0022112077000718
|
[2] |
Ohki M. Unsteady flows in a porous, elastic, circular tube—part 1: the wall contracting or expanding in an axial direction[J]. Bulletin of the JSME, 1980, 23(179): 679-686. doi: 10.1299/jsme1958.23.679
|
[3] |
Goto M, Uchida S. Unsteady flow in a semi-infinite expanding pipe with injection through wall [J]. Journal of the Japan Society for Aeronautical and Space Science, 1990, 33(9): 14-27.
|
[4] |
Bujurke N M, Pai N P, Jayaraman G. Computer extended series solution for unsteady flow in a contracting or expanding pipe[J]. IMA Journal of Applied Mathematics, 1998, 60(2): 151-165. doi: 10.1093/imamat/60.2.151
|
[5] |
Majdalani J, Zhou C, Dawson C D. Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability[J]. Journal of Biomechanics, 2002, 35(10): 1399-1403. doi: 10.1016/S0021-9290(02)00186-0
|
[6] |
Dauenhauer C E, Majdalani J. Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls[J]. Physics of Fluids, 2003, 15(6): 1485-1495. doi: 10.1063/1.1567719
|
[7] |
Majdalani J, Zhou C. Moderate-to-large injection and suction driven channel flows with expanding or contracting walls[J]. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik,2003, 83(3): 181-196. doi: 10.1002/zamm.200310018
|
[8] |
Eringen A C. Theory of micropolar fluids[J]. Journal of Mathematics and Mechanics, 1966, 16(1): 1-18.
|
[9] |
Eringen A C. Theory of thermomicropolar fluids[J]. Journal of Mathematical Analysis and Applications, 1972, 38(2): 480-496. doi: 10.1016/0022-247X(72)90106-0
|
[10] |
Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics—a review[J]. International Journal of Engineering Science, 1973, 11(8): 905-930. doi: 10.1016/0020-7225(73)90038-4
|
[11] |
Ariman T, Turk M A, Sylvester N D. Application of Microcontinuum fluid mechanics—a review[J]. International Journal of Engineering, 1974, 12(4): 273-293. doi: 10.1016/0020-7225(74)90059-7
|
[12] |
Eringen A C. Microcontinuum Field Theories—Ⅱ: Fluent Media[M]. New York: Springer, 2001.
|
[13] |
Ramachandran P S, Mathur M N, Ojha S K. Heat transfer in boundary layer flow of a micropolar fluid past a curved surface with suction and injection[J]. International Journal of Engineering, 1979, 17(5): 625-639. doi: 10.1016/0020-7225(79)90131-9
|
[14] |
Takhar H S, Bhargava R, Agrawal R S, Balaji A V S. Finite element solution of micropolar fluid flow and heat transfer between two porous discs[J]. International Journal of Engineering Science, 2000, 38(17): 1907-1922. doi: 10.1016/S0020-7225(00)00019-7
|
[15] |
Kelson N A, Farrell T W. Micropolar fluid flow over a porous stretching sheet with strong suction or injection[J]. International Communications in Heat and Mass Transfer, 2001, 28(4): 479-488. doi: 10.1016/S0735-1933(01)00252-4
|
[16] |
Ashraf M, Kamal A M, Syed K S. Numerical study of asymmetric laminar flow of a micropolar fluid in a porous channel[J]. Computers & Fluids, 2009, 38(10): 1895-1902.
|
[17] |
Ashraf M, Kamal A M, Syed K S. Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk[J]. Applied Mathematical Modelling, 2009, 33(4): 1933-1943. doi: 10.1016/j.apm.2008.05.002
|
[18] |
Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca, Raton: Chapman Hall/CRC Press, 2003.
|
[19] |
Liao S J. On the homotopy analysis method for nonlinear problems[J]. Applied Mathematics and Computation, 2004, 147(2): 499-513. doi: 10.1016/S0096-3003(02)00790-7
|
[20] |
Hayat T , Khan M. Homotopy solution for a generalized second grade fluid past a porous plate[J]. Nonlinear Dynamics, 2005, 42(4): 395-405. doi: 10.1007/s11071-005-7346-z
|
[21] |
Hayat T, Khan M, Asghar S. Magnetohydrodynamic flow of an oldroyd 6-constant fluid[J]. Applied Mathematics and Computation, 2004, 155(2): 417-225. doi: 10.1016/S0096-3003(03)00787-2
|
[22] |
Hayat T, Khan M , Siddiqui A M, Asghar S. Transient flows of a second grade fluid[J]. International Journal of Non-Linear Mechanics, 2004, 39(10): 1621-1633. doi: 10.1016/j.ijnonlinmec.2002.12.001
|
[23] |
Abbas Z, Sajid M, Hayat T. MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(4): 229-238.
|
[24] |
Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J]. Physics Letters A, 2006, 355(1): 18-26. doi: 10.1016/j.physleta.2006.01.092
|
[25] |
Sajid M, Abbas Z, Hayat T. Homotopy analysis for boundary layer flow of a micropolar fluid through a porous channel[J]. Applied Mathematical Modelling, 2009, 33(11): 4120-4125. doi: 10.1016/j.apm.2009.02.006
|
[26] |
Scrinivasacharya D, Murthy J V R, Venugopalam D. Unsteady Stokes flow of micropolar fluid between two parallel porous plates[J]. International Journal of Engineering Science, 2001, 39(14): 1557-1563. doi: 10.1016/S0020-7225(01)00027-1
|
[27] |
Rees D, Pop I. Free convection boundary layer flow of a micropolar fluid from a vertical flat plate[J]. IMA Journal of Applied Mathematics, 2001, 61(2):179-191.
|
[28] |
Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Computers & Mathematics With Applications, 1980, 6(2): 213-233.
|
[29] |
Liao S J. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016. doi: 10.1016/j.cnsns.2009.09.002
|