WANG Xiao-feng, ZHANG Qi-lin, YANG Qing-shan. New Finite Element of Spatial Thin-Walled Beams[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1089-1100. doi: 10.3879/j.issn.1000-0887.2010.09.009
Citation: WANG Xiao-feng, ZHANG Qi-lin, YANG Qing-shan. New Finite Element of Spatial Thin-Walled Beams[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1089-1100. doi: 10.3879/j.issn.1000-0887.2010.09.009

New Finite Element of Spatial Thin-Walled Beams

doi: 10.3879/j.issn.1000-0887.2010.09.009
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-07-21
  • Publish Date: 2010-09-15
  • Based on the theories of Timoshenko's beams and Vlasov's thin-walled members,a new spatial thin-walled beam element with an interior node was developed.By independently interpolating bending angles and warp,factors such as transverse shear deformation,torsional shear deformation and their coupling, coupling of flexure and torsion,and second shear stress were all considered.According to the generalized variational theory of Hellinger-Reissner,the element stiffness matrix was deduced.Examples manifest that the developed model is accurate and can be applied in the finite element analysis of thin-walled structures.
  • loading
  • [1]
    Magnucka-Blandzi E. Critical state of a thin-walled beam under combined load[J]. Applied Mathematical Modelling, 2009, 33(7): 3093-3098. doi: 10.1016/j.apm.2008.10.014
    [2]
    Setiyono H. An alternative approach to the analytical determination of the moment capacity of a thin-walled channel steel section beam[J]. International Journal of Mechanical Sciences, 2008, 50(8): 1280-1291. doi: 10.1016/j.ijmecsci.2008.05.004
    [3]
    Setiyono H. Plastic mechanism and elastic-analytical approaches applied to estimate the strength of an axially compressed-thin-walled channel steel section beam[J]. International Journal of Mechanical Sciences, 2007, 49(3):257-266. doi: 10.1016/j.ijmecsci.2006.09.009
    [4]
    Bottoni M, Mazzotti C, Savoia M. A finite element model for linear viscoelastic behaviour of pultruded thin-walled beams under general loadings[J]. International Journal of Solids and Structures, 2008, 45(3/4):770-793. doi: 10.1016/j.ijsolstr.2007.08.028
    [5]
    Wang X F, Yang Q S. Geometrically nonlinear finite element model of spatial thin-walled beams with general open cross section[J]. Acta Mechanica Solida Sinica, 2009, 22(1): 64-72.
    [6]
    Emre E R, Mohareb M. Torsion analysis of thin-walled beams including shear deformation effects[J]. Thin-Walled Structures, 2007, 44(10):1096-1108.
    [7]
    Mohri F, Damil N, Ferry M P. Large torsion finite element model for thin-walled beams[J]. Computers and Structures, 2008, 86(7/8):671-683. doi: 10.1016/j.compstruc.2007.07.007
    [8]
    Mohri F, Eddinari A, Damil N, Potier F M. A beam finite element for non-linear analyses of thin-walled elements[J]. Thin-Walled Structures, 2008, 46(7/9): 981-990. doi: 10.1016/j.tws.2008.01.028
    [9]
    Yau J D. Lateral buckling analysis of angled frames with thin-walled I-beams[J]. Journal of Marine Science and Technology, 2009, 17(1): 29-33.
    [10]
    Mohri F, Bouzerira C, Potier-Ferry M. Lateral buckling of thin-walled beam-column elements under combined axial and bending loads[J]. Thin-Walled Structures, 2008, 46(3): 290-302. doi: 10.1016/j.tws.2007.07.017
    [11]
    Ruta G C, Varano V, Pignataro M, Rizzi N L. A beam model for the flexural-torsional buckling of thin-walled members with some applications[J]. Thin-Walled Structures, 2008, 46(7/9): 816-822. doi: 10.1016/j.tws.2008.01.020
    [12]
    Machado S P. Non-linear buckling and postbuckling behavior of thin-walled beams considering shear deformation[J]. International Journal of Non-Linear Mechanics, 2008, 43(5):345-365. doi: 10.1016/j.ijnonlinmec.2007.12.019
    [13]
    Goncalves R, Camotim D. Thin-walled member plastic bifurcation analysis using generalised beam theory[J]. Advances in Engineering Software, 2007, 38(8/9): 637-646. doi: 10.1016/j.advengsoft.2006.08.027
    [14]
    Tralli A. Simple hybrid model for torsion and flexure of thin-walled beams[J]. Computers and Structures, 1986, 22(4):649-658. doi: 10.1016/0045-7949(86)90017-9
    [15]
    Back S Y, Will K M. Shear-flexible element with warping for thin-walled open beams[J]. International Journal for Numerical Methods in Engineering, 1998, 43(7): 1173-1191. doi: 10.1002/(SICI)1097-0207(19981215)43:7<1173::AID-NME340>3.0.CO;2-4
    [16]
    Gendy A S, Saleeb A F, Chang T Y P. Generalized thin-walled beam models for flexural-torsional analysis[J]. Computers and Structures, 1992, 42(4):531-550. doi: 10.1016/0045-7949(92)90120-O
    [17]
    Hong C, Blandford G E. C0 finite element formulation for thin-walled beams[J]. International Journal for Numerical Methods in Engineering, 1989, 28(10):2239-2255. doi: 10.1002/nme.1620281004
    [18]
    Hu Y R, Jin X D, Chen B Z. Finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross-sections[J]. Computers and Structures, 1996, 61(5): 897-908. doi: 10.1016/0045-7949(96)00058-2
    [19]
    Minghini F, Tullini N, Laudiero F. Locking-free finite elements for shear deformable orthotropic thin-walled beams[J]. International Journal for Numerical Methods in Engineering, 2007, 72(7): 808-834. doi: 10.1002/nme.2034
    [20]
    Kim N, Kim M Y. Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects[J]. Thin-Walled Structures, 2005, 43(5):701-734. doi: 10.1016/j.tws.2005.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1809) PDF downloads(823) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return