Ch. Srinivasa Rao, Manoj K Yadav. Large Time Asymptotics for Solutions of a Nonhomogeneous Burgers Equation[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1133-1139. doi: 10.3879/j.issn.1000-0887.2010.09.012
Citation: Ch. Srinivasa Rao, Manoj K Yadav. Large Time Asymptotics for Solutions of a Nonhomogeneous Burgers Equation[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1133-1139. doi: 10.3879/j.issn.1000-0887.2010.09.012

Large Time Asymptotics for Solutions of a Nonhomogeneous Burgers Equation

doi: 10.3879/j.issn.1000-0887.2010.09.012
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-06-04
  • Publish Date: 2010-09-15
  • Solutions of a nonhomogeneous Burgers equation subject to bounded and compactly supported initial profiles were constructed.In an interesting study,Kloosterziel(Kloosterziel R C.J Engrg Math,1990, 24(3):213-236)represented the solution of an initial value problem(IVP)for the heat equation,with initial data in(L2(R,ex2/2),as a series of the self-similar solutions of the heat equation.This approach quickly revealed the large time behaviour for the solution of the IVP.Inspired by Kloosterziel's approach, the solution of the nonhomogeneous Burgers equation in terms of the self-similar solutions of the heat equation was expressed.Finally,the large time behaviour of the solutions of the nonhomogeneous Burgers equation is obtained.
  • loading
  • [1]
    Ablowitz M J, De Lillo S. The Burgers equation under deterministic and stochastic forcing [J]. Physica D, 1996, 92(3/4):245-259. doi: 10.1016/0167-2789(95)00274-X
    [2]
    Balogh A, Gilliam D S, Shubov V I. Stationary solutions for a boundary controlled Burgers’equation [J]. Math Comput Model, 2001, 33(1/3): 21-37. doi: 10.1016/S0895-7177(00)00226-0
    [3]
    Gao Y T, Xu X G, Tian B. Variable-coefficient forced Burgers system in nonlinear fluid mechanics and its possibly observable effects[J]. Int J Mod Phys C, 2003, 14(9): 1207-1222. doi: 10.1142/S0129183103005340
    [4]
    Gurarie V, Migdal A. Instantons in the Burgers equation[J]. Phys Rev E, 1996, 54(5):4908-4914. doi: 10.1103/PhysRevE.54.4908
    [5]
    Xu T, Zhang C-Y, Li J, Meng X-H, Zhu H-W, Tian B. Symbolic computation on generalized Hopf-Cole transformation for a forced Burgers model with variable coefficients from fluid dynamics[J]. Wave Motion, 2007, 44(4): 262-270. doi: 10.1016/j.wavemoti.2006.10.004
    [6]
    Kloosterziel R C. On the large-time asymptotics of the diffusion equation on infinite domains[J]. J Engrg Math, 1990, 24(3): 213-236. doi: 10.1007/BF00058467
    [7]
    Higgins J R. Completeness and Basic Properties of Sets of Special Functions[M]. Cambridge:Cambridge University Press, 1977.
    [8]
    Ding X-Q, Jiu Q-S, He C. On a nonhomogeneous Burgers’equation[J]. Sci China Ser A, 2001, 44(8): 984-993. doi: 10.1007/BF02878974
    [9]
    Rao C S, Yadav M K. Solutions of a nonhomogeneous Burgers equation[J]. Stud Appl Math, 2010, 124(4): 411-422. doi: 10.1111/j.1467-9590.2009.00478.x
    [10]
    Polyanin A D. Handbook of Linear Partial Differential Equations for Engineers and Scientists[M].New York:Chapman & Hall/CRC, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1346) PDF downloads(704) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return