PENG Hai-jun, GAO Qiang, WU Zhi-gang, ZHONG Wan-xie. Symplectic Multi-Level Method for Solving Nonlinear Optimal Control Problem[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1191-1200. doi: 10.3879/j.issn.1000-0887.2010.10.006
Citation: PENG Hai-jun, GAO Qiang, WU Zhi-gang, ZHONG Wan-xie. Symplectic Multi-Level Method for Solving Nonlinear Optimal Control Problem[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1191-1200. doi: 10.3879/j.issn.1000-0887.2010.10.006

Symplectic Multi-Level Method for Solving Nonlinear Optimal Control Problem

doi: 10.3879/j.issn.1000-0887.2010.10.006
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-08-30
  • Publish Date: 2010-10-15
  • The optimal control problem for nonlinear system was transformed into Hamiltonian system and a symplectic-preserving method was proposed.The state and costate variables were approximated by Lagrange polynomial and state variables at two ends of the time interval were taken as the independent variables, and then based on the dual variable principle, nonlinear optimal control problems were replaced by nonlinear equations.In the implement of symplectic algorithm, based on the 2N algorithm, a multi-level method was proposed.When the time grid was refined from the low level to the high level, the initial state variables and costate variables of nonlinear equations could be obtained from Lagrange interpolation at the low level grid, which could improve the efficiency.Numerical simulations show the precision and efficiency of the proposed algorithm.
  • loading
  • [1]
    Sage A P, White C C. Optimum Systems Control[M]. New Jersey: Prentice-Hall, 1977.
    [2]
    Bryson A E, Ho Y C. Applied Optimal Control[M]. New York: Hemisphere Publishing Corporation, 1975.
    [3]
    钟万勰, 吴志刚, 谭述君. 状态空间控制理论与计算[M]. 北京:科学出版社,2007.
    [4]
    Schley C H, Lee I. Optimal control computation by the Newton-Raphson method and the Riccati transformation[J]. IEEE Transactions on Automatic Control, 1967, 12(2):139-144. doi: 10.1109/TAC.1967.1098542
    [5]
    谭述君,钟万勰. 非线性最优控制系统的保辛摄动近似求解[J]. 自动化学报, 2007, 33(9): 1004-1008.
    [6]
    Beeler S C, Tran H T, Banks H T. Feedback control methodologies for nonlinear systems[J]. Journal of Optimization Theory and Applications, 2000, 107(1):1-33. doi: 10.1023/A:1004607114958
    [7]
    Nedeljkovic N. New algorithms for unconstrained nonlinear optimal control problems[J]. IEEE Transactions on Automatic Control, 1981, 26(4): 868-884. doi: 10.1109/TAC.1981.1102732
    [8]
    Benson D A, Huntington G T, Thorvaldsen T P, Rao A V. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance Control and Dynamics, 2006, 29(6): 1435-1439. doi: 10.2514/1.20478
    [9]
    Badakhshan K P, Kamyad A V. Numerical solution of nonlinear optimal control problems using nonlinear programming[J]. Applied Mathematics and Computation, 2007, 187(2): 1511-1519. doi: 10.1016/j.amc.2006.09.074
    [10]
    Arnold V I. Mathematical Methods of Classical Mechanics[M]. New York: Springer-Verlag, 1989.
    [11]
    高强, 谭述君, 张洪武,钟万勰. 基于对偶变量变分原理和两端动量独立变量的保辛方法[J]. 动力学与控制学报, 2009, 7(2): 97-103.
    [12]
    Lew A, Marsden J E, Ortiz M, West M. Variational time integrators[J]. International Journal for Numerical Methods in Engineering, 2004, 60: 153-212. doi: 10.1002/nme.958
    [13]
    de Leon M, de Diego D Martin, Santamaria-Merino A. Discrete variational integrators and optimal control theory[J]. Advances in Computational Mathematics, 2007, 26(1/3): 251-268. doi: 10.1007/s10444-004-4093-5
    [14]
    Srinivas R, Vadali R S. Optimal finite-time feedback controllers for nonlinear systems with terminal constraints[J]. Journal of Guidance Control and Dynamics, 2006, 29(4): 921-928. doi: 10.2514/1.16790
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2232) PDF downloads(820) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return