YIN Ya-jun, WU Ji-ye, HUANG Ke-zhi, FAN Qin-shan. From the Second Gradient Operator and Second Category of Integral Theorems to Gauss or Spherical Mapping Invariants[J]. Applied Mathematics and Mechanics, 2008, 29(7): 775-782.
Citation: YIN Ya-jun, WU Ji-ye, HUANG Ke-zhi, FAN Qin-shan. From the Second Gradient Operator and Second Category of Integral Theorems to Gauss or Spherical Mapping Invariants[J]. Applied Mathematics and Mechanics, 2008, 29(7): 775-782.

From the Second Gradient Operator and Second Category of Integral Theorems to Gauss or Spherical Mapping Invariants

  • Received Date: 2007-11-20
  • Rev Recd Date: 2008-06-12
  • Publish Date: 2008-07-15
  • Through the combination of the second gradient operator,the second category of integral theorems,the Gauss-curvature-based integral theorems and the Gauss(or spherical) mapping,a series of invariants or geometric conservation quantities under Gauss(or spherical) mapping were revealed.From these mapping invariants important transfor mations between original curved surface and the spherical surface were derived.The potential applications of these invariants and transformations to geometryare prospected.
  • loading
  • [1]
    Baumgart T, Hess S T, Webb W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[J].Nature,2003,425(6960):821-824. doi: 10.1038/nature02013
    [2]
    YIN Ya-jun, CHEN Yan-qiu, NI Dong,et al.Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes[J].J Biomechanics,2005,38(7):1433-1440. doi: 10.1016/j.jbiomech.2004.06.024
    [3]
    Yin Y, Yin J, Ni D. General mathematical frame for open or closed biomembranes: equilibrium theory and geometrically constraint equation[J].Journal of Mathematical Biology,2005,51(4):403-413. doi: 10.1007/s00285-005-0330-x
    [4]
    Yin Y, Yin J, Lv C. Equilibrium theory in 2D Riemann manifold for heterogeneous biomembranes with arbitrary variational modes[J].Journal of Geometry and Physics,2008,58(1):122-132. doi: 10.1016/j.geomphys.2007.10.001
    [5]
    YIN Ya-jun. Integral theorems based on a new gradient operator derived from biomembranes (Part Ⅰ): Fundamentals[J].Tsinghua Science and Technology,2005,10(3):372-375. doi: 10.1016/S1007-0214(05)70083-3
    [6]
    YIN Ya-jun. Integral theorems based on a new gradient operator derived from biomembranes (Part Ⅱ): Applications[J].Tsinghua Science and Technology,2005,10(3):376-380. doi: 10.1016/S1007-0214(05)70084-5
    [7]
    Yin Y, YIN Jie, WU Ji-ye.The second gradient operator and integral theorems for tensor fields on curved surfaces[J].Applied Mathematical Sciences,2007,1(30):1465-1484.
    [8]
    Yin Y, Wu J. Symmetrical fundamental tensors, differential operators, and integral theorems in differential geometry[J].Tsinghua Science and Technology,2008,13(2):121-126.
    [9]
    黄克智,薛明德,陆明万.张量分析(第二版)[M].北京:清华大学出版社,2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2915) PDF downloads(620) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return