M. K. Ghosh, M. Kanoria. Generalized Thermoelastic Functionally Graded Spherically Isotropic Solid Containing a Spherical Cavity Under Thermal Shock[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1147-1160.
Citation: M. K. Ghosh, M. Kanoria. Generalized Thermoelastic Functionally Graded Spherically Isotropic Solid Containing a Spherical Cavity Under Thermal Shock[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1147-1160.

Generalized Thermoelastic Functionally Graded Spherically Isotropic Solid Containing a Spherical Cavity Under Thermal Shock

  • Received Date: 2008-02-13
  • Rev Recd Date: 2008-06-30
  • Publish Date: 2008-10-15
  • The determination of thermoelastic displacement,stresses and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters(Green and Lind-say theory)are concerned with.The surface of the cavity is stress free and is subjected to a time dependent thermal shock.The basic equations were written in the form of a vecto-rmatrix differential equation in the Laplace transform domain which was then solved by eigenvalue approach.The numerical inversion of the transforms was carried out using Bellman method.The displacement,stresses and temperature were computed and presented graphically.It is found that the variation of thermo-physical properties of a material strongly influences the response to loading.A comparative study with the corresponding homogeneous material has also been made.
  • loading
  • [1]
    Biot M A. Thermoelasticity and irreversible thermodynamics[J].J Appl Phys,1956,27(3):240-253. doi: 10.1063/1.1722351
    [2]
    Chadwick P.Thermoelasticity,the Dynamical Theory[M].In:Hill R,Sneddon I N,Eds.Progress in Solid Mechanics.Vol 1.Amsterdam: North Holland,1960.
    [3]
    Lord H,Shulman Y.A generalized dynamical theory of thermoelasticity[J].Mech Phys Solid,1967,15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [4]
    Green A E,Lindsay K A. Thermoelasticity[J].J Elast,1972,2(1):1-7. doi: 10.1007/BF00045689
    [5]
    Tzou D Y. Experimental support for the lagging behavior in heat propagation[J].J Thermophys Heat Transf,1995,9(4):686-693. doi: 10.2514/3.725
    [6]
    Mitra K, Kumar S,Vedaverg A. Experimental evidence of hyperbolic heat conduction in processed meat[J].J Heat Transfer,ASME,1995,117(3):568-573. doi: 10.1115/1.2822615
    [7]
    Chandrasekharaiah D S. Thermoelasticity with second sound, a review[J].Appl Mech Rev,1986,39(3):355-375. doi: 10.1115/1.3143705
    [8]
    Bahar L, Hetnarski R. State space approach to thermoelasticity[J].J Thermal Stresses,1978,1(1):135-145. doi: 10.1080/01495737808926936
    [9]
    Ezzat M. Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions[J].Internat J Engrg Sci,1995,33(14):2011-2020. doi: 10.1016/0020-7225(95)00050-8
    [10]
    Hetnarski R B,Ignaczak J.Generalized thermoelasticity response of semi-space to a short laser pulse[J].J Thermal Stresses,1994,17(3):377-396. doi: 10.1080/01495739408946267
    [11]
    Bagri A, Eslami M R.Generalized coupled thermoelasticity of disks based on the Lord-Shulman model[J].J Thermal Stresses,2004,27(8):691-704. doi: 10.1080/01495730490440127
    [12]
    Kar A, Kanoria M.Thermo-elastic interaction with energy dissipation in an unbounded body with a spherical hole[J].International Journal of Solids and Structures,2007,44(9):2961-2971. doi: 10.1016/j.ijsolstr.2006.08.030
    [13]
    Das N C,Lahiri A. Thermoelastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium[J].Ind J Pure Appl Math,2000,31(1):19-32.
    [14]
    Kar A, Kanoria M. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc[J].European Journal of Mechanics, A/Solids,2007,26(6):969-981. doi: 10.1016/j.euromechsol.2007.03.001
    [15]
    Ghosh M K,Kanoria M. Generalized thermoelastic problem of a spherically isotropic infinite elastic medium containing a spherical cavity[J].J Thermal Stresses,2008,31(8):665-679. doi: 10.1080/01495730802193872
    [16]
    Aboudi J, Pindera M J,Arnold S M. Thermo-inelastic response of functionally graded composites[J].International Journal of Solids and Structures,1995, 32(12):1675-1710. doi: 10.1016/0020-7683(94)00201-7
    [17]
    Wetherhold R C,Seelman S, WANG Jian-zhong. The use of functionally graded materials to eliminate or control thermal deformation[J].Composites Science and Technology,1996,56(9):1099-1104. doi: 10.1016/0266-3538(96)00075-9
    [18]
    Sugano Y. An expression for transient thermal stress in a nonhomogeneous plate with temperature variation through thickness[J].Ingenieur Archiv,1987,57(2):147-156. doi: 10.1007/BF00541388
    [19]
    Qian L F, Batra R C. Transient thermoelastic deformations of a thick functionally graded plate[J].J Thermal Stresses,2004,27(8):705-740. doi: 10.1080/01495730490440145
    [20]
    Lutz M P,Zimmerman R W. Thermal stresses and effective thermal expansion coefficient of a functionally graded sphere[J].J Thermal Stresses,1996,19(1): 39-54. doi: 10.1080/01495739608946159
    [21]
    Ye G R, Chen W Q,Cai J B.A uniformly heated functionally graded cylindrical shell with transverse isotropy[J].Mechanics Research Communication,2001,28(5):535-542. doi: 10.1016/S0093-6413(01)00206-3
    [22]
    Chen W Q, Wang X,Ding H J. Free vibration of a fluid-filled hollow sphere of a functionally graded material with spherical isotropy[J].Journal of the Acoustical Society of America,1999,106(5):2588-2594. doi: 10.1121/1.428090
    [23]
    Ding H J, Wang H M,Chen W Q.Analytical thermo-elastodynamic solutions for a nonhomogeneous transversely isotropic hollow sphere[J].Archive of Applied Mechanics,2002,72(8):545-553. doi: 10.1007/s00419-002-0225-x
    [24]
    Chen W Q, Ding H J,Wang X. The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property[J].International Journal of Solids and Structures,2001,38(38/39):7015-7027. doi: 10.1016/S0020-7683(00)00394-2
    [25]
    Wang B L,Mai Y W. Transient one dimensional heat conduction problems solved by finite element[J].International Journal of Mechanical Sciences,2005,47(2):303-317. doi: 10.1016/j.ijmecsci.2004.11.001
    [26]
    Shao Z S, Wang T J,Ang K K. Transient thermo-mechanical analysis of functionally graded hollow circular cylinders[J].J Thermal Stresses,2007,30(1):81-104. doi: 10.1080/01495730600897211
    [27]
    Mallik S H,Kanoria M. Generalized thermo-elastic functionally graded solid with a periodically varying heat source[J].International Journal of Solids and Structures,2007,44(22/23):7633-7645. doi: 10.1016/j.ijsolstr.2007.05.001
    [28]
    Bagri A, Eslami M R. A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders[J].J Thermal Stresses,2007,30(9/10):911-930. doi: 10.1080/01495730701496079
    [29]
    Chen W Q. Stress distribution in a rotating elastic functionally graded material hollow sphere with spherical isotropy[J].Journal of Strain Analysis for Engineering Design,2000,35(1):13-20. doi: 10.1243/0309324001513973
    [30]
    Obata Y, Noda N.Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally graded material[J].J Thermal Stresses,1994,17(5):471-487. doi: 10.1080/01495739408946273
    [31]
    Ootao Y,Tanigawa Y.Transient thermoelastic problem of a functionally graded cylindrical panel due to nonuniform heat supply[J].J Thermal Stresses,2007,30(5):441-457. doi: 10.1080/01495730601146394
    [32]
    Das N C, Lahiri A, Sen P K.Eigenvalue approach to three dimensional generalized thermoelasticity[J].Bulletin Calcutta Math Soc,2006,98(4):305-318.
    [33]
    Nowacki W.Dynamic Problems of Thermoelasticity[M].Warszawa: Polish Scientific Publishers, 1975.
    [34]
    Wang H M, Ding H J,Chen Y M. Thermoelastic dynamic solution of a multilayered spherically isotropic hollow sphere for spherically symmetric problems[J].Acta Mechanica,2005,173(1/4):131-145.
    [35]
    Bellman R, Kolaba R E, Lockette J A.Numerical Inversion of the Laplace Transform[M].New York:American Elsevier Pub Co, 1966.
    [36]
    Dhaliwal R S,Sing A.Dynamic Coupled Thermoelasticity[M].Delhi:Hindustan Publ, 1980.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2667) PDF downloads(516) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return