GUO Yan, LIU Ru-xun. Characteristic-Based Finite Volume Scheme for 1D Euler Equations[J]. Applied Mathematics and Mechanics, 2009, 30(3): 291-300.
Citation: GUO Yan, LIU Ru-xun. Characteristic-Based Finite Volume Scheme for 1D Euler Equations[J]. Applied Mathematics and Mechanics, 2009, 30(3): 291-300.

Characteristic-Based Finite Volume Scheme for 1D Euler Equations

  • Received Date: 2008-07-04
  • Rev Recd Date: 2009-02-12
  • Publish Date: 2009-03-15
  • A highorder finitevolume scheme was presented for the onedimensional scalar and inviscid Euler conservation laws. The Simpson's quadrature rule was used to achieve highorder accuracy in time. To get the point value of the Simpson's quadrature, the characteristic theory was used to obtain the positions of the grid points at each sub-time stages along the characteristic curves, and the thirdorder and fifth-order central weighted essentially non-oscillatory (CWENO) reconstruction was adopted to estimate the cell point values. Several standard one-dimensional examples were used to verify highorder accuracy, convergence and capability of capturing shock.
  • loading
  • [1]
    Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes[J].J Comput Phys,1988,77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
    [2]
    Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J].J Comput Phys,1989,83(1):32-78. doi: 10.1016/0021-9991(89)90222-2
    [3]
    Jiang G,Shu C W.Efficient implementation of weighted ENO schemes[J]. J Comput Phys,1996,126(1):202-228. doi: 10.1006/jcph.1996.0130
    [4]
    Levy D,Pupo G,Russo G.Compact central WENO schemes for multidimensional conservation laws[J].SIAM J Sci Comput,2000,22(2):656-672. doi: 10.1137/S1064827599359461
    [5]
    Capdeville G.A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes[J].J Comput Phys,2008,227(5):2977-3014. doi: 10.1016/j.jcp.2007.11.029
    [6]
    陈荣三.大密度和大压力比可压缩的数值计算[J].应用数学和力学,2008,29(5):609-617.
    [7]
    涂国华,袁湘江,陆利蓬.激波捕捉差分方法研究[J].应用数学和力学,2007,28(4):433-440.
    [8]
    HU Jun,GUO Shao-gang.Solution to Euler equations by high-resolution upwind compact scheme based on flux splitting[J]. Internat J Numer Meth Fluids,2008,56(11):2139-2150. doi: 10.1002/fld.1611
    [9]
    Xiao F,Peng X. A convexity preserving scheme for conservative advection transport[J].J Comput Phys,2004,198(2):389-402. doi: 10.1016/j.jcp.2004.01.013
    [10]
    Ii S,Xiao F. CIP/multi-moment finite volume method for Euler equations:A semi-Lagrangian characteristic formulation[J]. J Comput Phys,2007,222(2):849-871. doi: 10.1016/j.jcp.2006.08.015
    [11]
    Qiu J,Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:one dimensional case[J].J Comput Phys,2004,193(1):115-135. doi: 10.1016/j.jcp.2003.07.026
    [12]
    Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J].Commun Pure Appl Math,1954,7(1):198-232.
    [13]
    Sod G. A survey of several finite difference methods for systems of non-linear conservation laws[J].J Comput Phys,1978,27(1):1-31. doi: 10.1016/0021-9991(78)90023-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3202) PDF downloads(1367) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return