| Citation: | GUO Yan, LIU Ru-xun. Characteristic-Based Finite Volume Scheme for 1D Euler Equations[J]. Applied Mathematics and Mechanics, 2009, 30(3): 291-300. | 
	                | [1] | 
					 Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes[J].J Comput Phys,1988,77(2):439-471. doi:  10.1016/0021-9991(88)90177-5 
					
					 | 
			
| [2] | 
					 Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J].J Comput Phys,1989,83(1):32-78. doi:  10.1016/0021-9991(89)90222-2 
					
					 | 
			
| [3] | 
					 Jiang G,Shu C W.Efficient implementation of weighted ENO schemes[J]. J Comput Phys,1996,126(1):202-228. doi:  10.1006/jcph.1996.0130 
					
					 | 
			
| [4] | 
					 Levy D,Pupo G,Russo G.Compact central WENO schemes for multidimensional conservation laws[J].SIAM J Sci Comput,2000,22(2):656-672. doi:  10.1137/S1064827599359461 
					
					 | 
			
| [5] | 
					 Capdeville G.A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes[J].J Comput Phys,2008,227(5):2977-3014. doi:  10.1016/j.jcp.2007.11.029 
					
					 | 
			
| [6] | 
					 陈荣三.大密度和大压力比可压缩的数值计算[J].应用数学和力学,2008,29(5):609-617. 
					
					 | 
			
| [7] | 
					 涂国华,袁湘江,陆利蓬.激波捕捉差分方法研究[J].应用数学和力学,2007,28(4):433-440. 
					
					 | 
			
| [8] | 
					 HU Jun,GUO Shao-gang.Solution to Euler equations by high-resolution upwind compact scheme based on flux splitting[J]. Internat J Numer Meth Fluids,2008,56(11):2139-2150. doi:  10.1002/fld.1611 
					
					 | 
			
| [9] | 
					 Xiao F,Peng X. A convexity preserving scheme for conservative advection transport[J].J Comput Phys,2004,198(2):389-402. doi:  10.1016/j.jcp.2004.01.013 
					
					 | 
			
| [10] | 
					 Ii S,Xiao F. CIP/multi-moment finite volume method for Euler equations:A semi-Lagrangian characteristic formulation[J]. J Comput Phys,2007,222(2):849-871. doi:  10.1016/j.jcp.2006.08.015 
					
					 | 
			
| [11] | 
					 Qiu J,Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:one dimensional case[J].J Comput Phys,2004,193(1):115-135. doi:  10.1016/j.jcp.2003.07.026 
					
					 | 
			
| [12] | 
					 Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J].Commun Pure Appl Math,1954,7(1):198-232. 
					
					 | 
			
| [13] | 
					 Sod G. A survey of several finite difference methods for systems of non-linear conservation laws[J].J Comput Phys,1978,27(1):1-31. doi:  10.1016/0021-9991(78)90023-2 
					
					 |