| Citation: | YAN Qing-you, XIONG Xi-wen. An Effcient and Stable Structure Preserving Algorithm for Computing the Eigenvalues of a Hamiltonian Matrix[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1150-1168. | 
	                | [1] | 
					 Byers R. A Hamiltonian QR-algirithm[J]. SIAM J Sci Statist Comput,1986,7:212-229. 
					
					 | 
			
| [2] | 
					 Bunse Gerstner A, Byers R, Mehrmann V. A chat of numerical methods for structured eigenvalue problems[J]. SIAM J Matrix Anal Appl,1992,13:419-453. 
					
					 | 
			
| [3] | 
					 Bunse-Gerstner A, Mehrmann V. A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation[J]. IEEE Trans Automat Control,1986,31:1104-1113. 
					
					 | 
			
| [4] | 
					 Hench J J, Laub A J. Numerical solution of the discrete-time periadic Riccati equation[J]. IEEE Trans Automat Control,1994,39:1197-1210. 
					
					 | 
			
| [5] | 
					 Lin W W. A new method for computing the closed loop eigenvalues of a discrete-time algebraic Riccati equation[J]. Linear Algebra Appl,1987,96:157-180. 
					
					 | 
			
| [6] | 
					 Lu L Z, Lin W W. An iterative algorithm for the solution of a discrete-time algebraic Riccati equation[J]. Linear Algebra Appl,1993,188/189:465-488. 
					
					 | 
			
| [7] | 
					 Lin W W, Wang C. On computing stable Lagrangian subspaces of Hamiltonian martices and symplectic pencils[J]. SIAM J Matrix Anal Appl,1997,18:590-614. 
					
					 | 
			
| [8] | 
					 Pappas C, Laub A J, Sandell N R. On the numerical solution of the discrete-time algebraic Reiccati equation[J]. IEEE Trans Autom Control,1980,25:631-641. 
					
					 | 
			
| [9] | 
					 Patel R V. On computing the eigenvalues of a symplectic pencils[J]. Linear Algebra Appl,1993,188:591-611. 
					
					 | 
			
| [10] | 
					 Patel R V, Lin Z, Misra P. Computation of stable invariant subspaces of Hamiltonian matrices[J]. SIAM J Matrix Anal Appl,1994,15:284-298. 
					
					 | 
			
| [11] | 
					 Benner P, Mehrmann V, Xu H. A numerically stable, structure preserving method for computing the eigenvalues oy real Hamiltonian or symplectic pencils[J]. Numer Math,1998,78:329-358. 
					
					 | 
			
| [12] | 
					 Bunse Gerstner A, Mehrmann V, Watkins D. An SR algorithm for Hamiltonian matrices, based on Gaussian elimination[J]. Methods Oper Res,1989,58:339-358. 
					
					 | 
			
| [13] | 
					 Mehrmann V. A symplectic orthogonal method for single input or single output discrete time optimal quadrtic control problems[J]. SIAM J Matrix Anal Appl,1988,9:221-247. 
					
					 | 
			
| [14] | 
					 Van Loan C. A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix[J]. Linear Algebra Appl,1984,16:233-251. 
					
					 | 
			
| [15] | 
					 许波,刘征. Matab工程数学应用[M]. 北京:清华大学出版社,2000. 
					
					 | 
			
| [16] | 
					 Golub G H, Van Loan C. Matrix Computations[M]. Baltimore: The Johns Hopkins University Press,1996. 
					
					 | 
			
| [17] | 
					 Stewart G W. Introduction to Matrix Computations[M]. New York: Academic,1973. 
					
					 | 
			
| [18] | 
					 Wilkinson J H. The Algebraic Eigenvalue Problem[M]. Clarendon: Oxford,1965. 
					
					 | 
			
| [19] | 
					 Benner P, Fabender H. An implicity restarted symplectic lanczos method for the Hamiltonian eigenvalue problem[J]. Linear Algebra Appl,1997,263:75-111. 
					
					 |