Yang Wenxiong. Mathematical Theory of k Multiplier[J]. Applied Mathematics and Mechanics, 2000, 21(3): 307-314.
Citation:
Yang Wenxiong . Mathematical Theory of k Multiplier [J]. Applied Mathematics and Mechanics, 2000, 21(3): 307-314.
Yang Wenxiong. Mathematical Theory of k Multiplier[J]. Applied Mathematics and Mechanics, 2000, 21(3): 307-314.
Citation:
Yang Wenxiong . Mathematical Theory of k Multiplier [J]. Applied Mathematics and Mechanics, 2000, 21(3): 307-314.
Mathematical Theory of k Multiplier
Received Date: 1998-11-03
Rev Recd Date:
1999-10-25
Publish Date:
2000-03-15
Abstract
On the power unit vector presented by Yang Wenxiong, it for the mathematical theory of k multiplier is extended to create a new mathematical branch. The extended k multiplier is yet to concern the negative powers. Enumerating the combinatorial variaties and its functions can satisfy the various conditions, formulas, integrations, and equations etc. derived by Yang Wenxiong. The theory of k multiplier will be applied further to establish the theory of supperlight of a particle and its motion with the natural wave-particle duality etc.
References
[1]
杨文熊,幂向量.复合向量数及其函数理论[J].应用数学和力学,1996,17(2):133~138.
[2]
杨文熊.广义非线性、非定常力学理论及在粒子物理学中的应用[J].应用数学和力学,1995,16(1):23~32.
[3]
杨文熊,高速运动粒子质量的守恒性[J].应用数学和力学,1998,19(8):725~729.
[4]
杨文熊,马波.地球运动的超非线性分析[J].西北地震学报,1997,19(4):98~100.
[5]
徐玉相.双曲线函数[M].上海:商务印书馆,1957.
[6]
阎喜杰.双曲线函数论[M].上海:科学技术出版社,1957,101~158.
Relative Articles
[1] ZHAO Xiang, MENG Shiyao. Forced Vibration Analysis of Euler-Bernoulli Double-Beam Systems by Means of Green’s Functions [J]. Applied Mathematics and Mechanics, 2023, 44(2): 168-177. doi: 10.21656/1000-0887.430298
[2] GAO Puyang, ZHAO Zitong, YANG Yang. Study on Numerical Solutions to Hyperbolic Partial Differential Equations Based on the Convolutional Neural Network Model [J]. Applied Mathematics and Mechanics, 2021, 42(9): 932-947. doi: 10.21656/1000-0887.420050
[3] FENG Yi-hu, CHEN Xian-feng, MO Jia-qi. The Soliton Solutions to a Class of Nonlinear Hyperbolic Evolution Equations [J]. Applied Mathematics and Mechanics, 2015, 36(10): 1076-1084. doi: 10.3879/j.issn.1000-0887.2015.10.007
[4] CHEN Yang-yang, YAN Le-wei, SZE Kam-yim, CHEN Shu-hui. Generalized Hyperbolic Perturbation Method for Homoclinic Solutions of Strongly Nonlinear Autonomous Systems [J]. Applied Mathematics and Mechanics, 2012, 33(9): 1064-1077. doi: 10.3879/j.issn.1000-0887.2012.09.004
[5] CHEN Yi-zhou. Comments on “General Solutions of Plane Problem for Power Function Curved Cracks” [J]. Applied Mathematics and Mechanics, 2012, 33(8): 1023-1024. doi: 10.3879/j.issn.1000-0887.2012.08.010
[6] M. Nadjafikhah, R. Bakhshandeh Chamazkoti, F. Ahangari. Potential Symmetries and Conservation Laws for Generalized Quasilinear Hyperbolic Equations [J]. Applied Mathematics and Mechanics, 2011, 32(12): 1501-1508. doi: 10.3879/j.issn.1000-0887.2011.12.010
[7] GUO Jun-hong, YUAN Ze-shuai, LU Zi-xing. General Solutions of Plane Problem for Power Function Curved Cracks [J]. Applied Mathematics and Mechanics, 2011, 32(5): 533-540. doi: 10.3879/j.issn.1000-0887.2011.05.003
[8] SONG Chang-ming. Nonexistence of Global Solutions of a Nonlinear Hyperbolic Equation With Material Damping [J]. Applied Mathematics and Mechanics, 2006, 27(7): 852-858.
[9] LIU An-ping, HE Meng-xing. Oscillatory Properties of the Solutions of Nonlinear Delay Hyperbolic Differential Equations of Neutral Type [J]. Applied Mathematics and Mechanics, 2002, 23(6): 604-610.
[10] TONG Xiao-jun, TONG Deng-ke, CHEN Mian-yun. The Mean Value Theorem and Converse Theorem of One Class the Fourth Order Partial Differential Equations [J]. Applied Mathematics and Mechanics, 2001, 22(6): 639-644.
[11] Yu Xuegang. Hyperbolic Lagrangian Functions [J]. Applied Mathematics and Mechanics, 1998, 19(12): 1095-1100.
[12] Wang Fanbin. Blow-Up and Die-out of Solutions of Nonlinear PseudoHyperbolic Equations of Generalized Nerve Conduction Type [J]. Applied Mathematics and Mechanics, 1996, 17(11): 1039-1043.
[13] Yang Wenxiong. Power Vectors Combinatorial Vector Numbers and Its Theory of Functions [J]. Applied Mathematics and Mechanics, 1996, 17(2): 133-138.
[14] Hu Yian-tai, Zhao Xing-hua. Two-Dimensional Prohlem of Anisotro Fic Elastic Bodywith a Hyperbolic Boundary [J]. Applied Mathematics and Mechanics, 1995, 16(5): 421-430.
[15] Wu Qi-guang, Sun Xiao-di. Numerical Solution of a Singularly Perturbed Elliptic Hyperbolic Partial Differential Equation on a Nonuniform Discretization Mesh [J]. Applied Mathematics and Mechanics, 1992, 13(12): 1037-1044.
[16] Geng Di, Qu Chang-zheng. On Nonlinear Hyperbolic Equation in Unbounded Domain [J]. Applied Mathematics and Mechanics, 1992, 13(3): 237-243.
[17] Su Yu-chcng, Lin Ping. An Exponentially Fitted Difference Scheme for the Hyperbolic-hyperbolic Singularly Perturbed Initial-Boundary Value Problem [J]. Applied Mathematics and Mechanics, 1991, 12(3): 219-227.
[18] Su Yu-cheng, Lin Ping. Uniform Difference Scheme for a Singularly Perturbed Linear 2nd Order Hyperbolic Problem with Zeroth Order Reduced Equation [J]. Applied Mathematics and Mechanics, 1990, 11(4): 283-294.
[19] Su Yu-cheng, Lin Ping. Numerical Solution of the Singularly Perturbed Problem for the Hyperbolic Equation with Initial Jump [J]. Applied Mathematics and Mechanics, 1990, 11(8): 665-670.
[20] Zhang Jian. Blow-up of Solutions of Nonlinear Pseudo-Hyperbolic Equations of Generalized Nerve Conduction Type [J]. Applied Mathematics and Mechanics, 1989, 10(8): 679-687.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 17.5 % FULLTEXT : 17.5 % META : 81.7 % META : 81.7 % PDF : 0.8 % PDF : 0.8 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 7.0 % 其他 : 7.0 % China : 1.1 % China : 1.1 % 上海 : 0.2 % 上海 : 0.2 % 北京 : 0.5 % 北京 : 0.5 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 广州 : 0.3 % 广州 : 0.3 % 张家口 : 3.0 % 张家口 : 3.0 % 武汉 : 0.5 % 武汉 : 0.5 % 洛杉矶 : 0.5 % 洛杉矶 : 0.5 % 深圳 : 0.2 % 深圳 : 0.2 % 温州 : 0.1 % 温州 : 0.1 % 盐城 : 0.2 % 盐城 : 0.2 % 芒廷维尤 : 7.1 % 芒廷维尤 : 7.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 78.7 % 西宁 : 78.7 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.1 % 郑州 : 0.1 % 重庆 : 0.1 % 重庆 : 0.1 % 其他 China 上海 北京 南宁 哥伦布 广州 张家口 武汉 洛杉矶 深圳 温州 盐城 芒廷维尤 苏州 西宁 西安 郑州 重庆