Ding Haojiang, Wang Guoqing, Chen Weiqiu. General Solution of Plane Problem of Piezoelectric Media Expressed by“Harmonic Functions”[J]. Applied Mathematics and Mechanics, 1997, 18(8): 703-710.
Citation: Ding Haojiang, Wang Guoqing, Chen Weiqiu. General Solution of Plane Problem of Piezoelectric Media Expressed by“Harmonic Functions”[J]. Applied Mathematics and Mechanics, 1997, 18(8): 703-710.

General Solution of Plane Problem of Piezoelectric Media Expressed by“Harmonic Functions”

  • Received Date: 1996-01-08
  • Publish Date: 1997-08-15
  • First based on the basic equations of two-dimensional piezoelec troelasticity,adisplacement function is introduced and the general solution is then derived Utilizing the generalized Almansi's theorem. the general solution is so simplified that allphysical quantities can be expressed by three "harmonic functions".Second,solutions of problems of a wedge loaded by point forces and point charge at the apex are alsoobtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.
  • loading
  • [1]
    Y. Shindo, E. Ozava and J. P. Nowacki. Singular stress and electric fields of a crackedpiezoelectric strip, International Journal of Apphed Electromc Materials. 1 (1990), 77~87.
    [2]
    Z. Suo. C. M. Kuo. D. M. Barnett and J. R. Willis, Fracture mechanics for piezoelectricceramics, Journal of the Mechanics and Physics of Solids, 40 (1992), 739~765.
    [3]
    M. L. Dunn and M. Taya. An analysis of piezoelectric composite materials containingellipsoidal inhomogeneities. Proceeding of the Royal Society of London-Series A, 443(1993). 245~287.
    [4]
    T. Y. Chen. Exact relations of incIusions in piezoelectric media-InternaIional Journal ofEngineering Science, 32 (1994). 265~287.
    [5]
    K. H. Sung, C. Keilers and F. K. Chang. Finite element analysis of composite structurescontaining distributed piezoceramic sensors and actuators, AIAA Journal, 30 (1993),772~780.
    [6]
    Z. Wang and B. Zheng. The general solution of three-dimensional problem inpiezoelectric media. International Journal of Solids and Structures 32 (1995), 105~115.
    [7]
    H. J. Ding, B. Chen and J. Liang, General solutions for coupled equations forpiezoelectric media, International Journal of Solids and Structures, 33 (1996), 2283~2298.
    [8]
    S. P. Timoshenko and J. N. Goodier, Theory of Etosticity, McGraw-Hill (1970).
    [9]
    S. G. Lekhniskii. Theory of Anisotropic Plate (Hu Haichang transl.), Science Press (1955).(Chinese version)
    [10]
    丁皓江、李育,圆柱型各向异性弹性力学平面问题,应用力学学报,11(1994), 11-18
    [11]
    H. A. Sosa and M. A. Castro, On concentrated loads at the boundary of a piezoelectrichalf plane, Journal of the Mechanics and Physics of Solids, 42 (1994), 1105~1122.
    [12]
    H. A. Sosa and M. A. Castro, Electroelastic analysis of piezoelectric laminatedstructures, Applied Mechanics Review, 46 (1993), 21~28.
    [13]
    R. A. Eubanks and E. Sternberg, On the axisymmetric problem of elastic theory for amedium with transverse isotropy, Journal of Rational Mechanics Analysis, 3 (1954), 89~101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2278) PDF downloads(700) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return