Gu Tongxiang. Asynchronous Relaxed Iterative Methods for Solving Linear Systems of Equations[J]. Applied Mathematics and Mechanics, 1997, 18(8): 747-751.
Citation:
Gu Tongxiang. Asynchronous Relaxed Iterative Methods for Solving Linear Systems of Equations[J]. Applied Mathematics and Mechanics, 1997, 18(8): 747-751.
Gu Tongxiang. Asynchronous Relaxed Iterative Methods for Solving Linear Systems of Equations[J]. Applied Mathematics and Mechanics, 1997, 18(8): 747-751.
Citation:
Gu Tongxiang. Asynchronous Relaxed Iterative Methods for Solving Linear Systems of Equations[J]. Applied Mathematics and Mechanics, 1997, 18(8): 747-751.
Asynchronous Relaxed Iterative Methods for Solving Linear Systems of Equations
Department of Mathematics, Henan Normal University, Xinxiang, Henan 453002, P. R. China
Received Date: 1995-07-06
Rev Recd Date:
1997-03-31
Publish Date:
1997-08-15
Abstract
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence ofasynchronous relaxed processes are given for H -matrix by which not only therequirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
References
[1]
D, Chazan and W, Miranker,C haotic relaxation,Lin, Alg, Appl,2 (1969),199-222,
[2]
G, Baudet,Asynchronous iterative methods for multiprocessors,J, ACM,25(1978),226-244.
[3]
迟学斌,线性方程组的异步迭代法,计算数学,14(3) (1992), 330-333,
[4]
谷同祥等.一类多分裂迭代法,《企国第三届并行算法学术会议论文集》,武汉,华中理工大学出版社(1992),186-190,
[5]
D, M, Young, Iterative Solution of Lasge Linear Systems,Academic Press,New York (1971).
Relative Articles
[1] ZHENG Senwei, KOU Jiaqing, ZHANG Weiwei. A Mixed-Precision GMRES Acceleration Algorithm for Large Sparse Matrices in Fluid Dynamics Simulation [J]. Applied Mathematics and Mechanics, 2025, 46(1): 40-54. doi: 10.21656/1000-0887.450167
[2] ZHANG Yingchun, LI Yin, XIAO Manyu, XIE Gongnan. Some Preconditioning Iterative Algorithms for Non-Hermitian Linear Equations [J]. Applied Mathematics and Mechanics, 2019, 40(3): 237-249. doi: 10.21656/1000-0887.390222
[3] FU Minghui, LI Yongxi. A Preconditioned Precise Integration Method for Solving Ill-Conditioned Linear Equations [J]. Applied Mathematics and Mechanics, 2018, 39(4): 462-469. doi: 10.21656/1000-0887.380206
[4] SHI Lan-fang, NIE Zi-wen. Solutions to the Nonlinear Schrödinger Equation and Coupled Nonlinear Schrödinger Equations With a New G′/(G+G′)-Expansion Method [J]. Applied Mathematics and Mechanics, 2017, 38(5): 539-552. doi: 10.21656/1000-0887.370269
[5] CHENG Guang-hui, HUANG Ting-zhu, CHENG Xiao-yu. Preconditioned Gauss-Seidel Type Iterative Methods for Solving Linear Systems [J]. Applied Mathematics and Mechanics, 2006, 27(9): 1117-1121.
[6] YUAN Wei-ran, CHEN Pu, LIU Kai-xin. High Performance Sparse Solver for Unsymmetrical Linear Equations With Out-of-Core Strategies and Its Application on Meshless Methods [J]. Applied Mathematics and Mechanics, 2006, 27(10): 1173-1181.
[7] MENG Ze-hong, ZHANG Jian-jun. Nonlinear Krylov Subspace Methods for Solving Nonsmooth Equations [J]. Applied Mathematics and Mechanics, 2005, 26(9): 1067-1075.
[8] XIE La-bing, JIANG Fu-ru. Computer Computation of the Method of Multiple Scales——Dirichlet Problem for a Class of System of Nonlinear Differential Equations [J]. Applied Mathematics and Mechanics, 2003, 24(11): 1118-1125.
[9] HE Ji-huan. Linearization and Correction Method for Nonlinear Problems [J]. Applied Mathematics and Mechanics, 2002, 23(3): 221-228.
[10] ZHANG Hong-qing, XIE Fu-ding, LU Bin. A Symbolic Computation Method to Decide the Completeness of the Solutions to the System of Linear Partial Differential Equations [J]. Applied Mathematics and Mechanics, 2002, 23(10): 1008-1012.
[11] Chen Fangqi, Chen Yushu. On Monotone Iterative Method for Initial Value Problems of Nonlinear Second Order Integrodifferential Equations in Banach Spaces [J]. Applied Mathematics and Mechanics, 2000, 21(5): 459-467.
[12] Fang Jinxuan, Song Guian. A Note on Probabilistic Contractor Couple and Solutions for a System of Nonlinear Equations in N.A.Menger PN-Spaces [J]. Applied Mathematics and Mechanics, 2000, 21(7): 759-765.
[13] Zhou Haiyun. Iterative Solution of Nonlinear Equations with Strongly Accretive Operators in Banach Spaces [J]. Applied Mathematics and Mechanics, 1999, 20(3): 269-276.
[14] Chang Haiping, Huang Taiping. The Auto-Adjustable Damping Method for Solving Nonlinear Equations [J]. Applied Mathematics and Mechanics, 1998, 19(2): 151-155.
[15] Salman H. Abbas, . The Theoretical Cost of Sequential and Parallel Algorithms for Solving Linear System of Equations [J]. Applied Mathematics and Mechanics, 1996, 17(12): 1077-1083.
[16] Zeng Luchuan. Iterative Construction of Solution to Nonlinear Equations of Lipschitzian and Local Strongly Accretive Operators [J]. Applied Mathematics and Mechanics, 1995, 16(6): 543-552.
[17] Zhang Bao-shan. A Modified Method of Averaging for Solving a Class of Nonlinear Equations [J]. Applied Mathematics and Mechanics, 1994, 15(12): 1119-1126.
[18] Pan Zhong-xiong, Wang Yi-fei. Numerical Method for the System of Reaction-Diffusion Equations with a Small Parameter [J]. Applied Mathematics and Mechanics, 1991, 12(8): 761-767.
[19] Zhang Shi-sheng, Peng Yong-cheng. Probabilistic Contractor Couple and Solutions for a System of Nonlinear Equations in Non-Archimedean Menger Probabilistic Normed Spaces [J]. Applied Mathematics and Mechanics, 1991, 12(11): 965-972.
[20] Hu Xi-heng. The Linearization of Certain Class of Nonlinear Simultaneous Equation Set Containing Amplitude and Phase Frequency Characteristics and Application [J]. Applied Mathematics and Mechanics, 1982, 3(4): 519-527.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 18.9 % FULLTEXT : 18.9 % META : 80.5 % META : 80.5 % PDF : 0.6 % PDF : 0.6 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 3.9 % 其他 : 3.9 % 其他 : 0.1 % 其他 : 0.1 % China : 0.8 % China : 0.8 % Singapore : 0.3 % Singapore : 0.3 % 上海 : 0.4 % 上海 : 0.4 % 北京 : 1.0 % 北京 : 1.0 % 南宁 : 0.1 % 南宁 : 0.1 % 南通 : 0.3 % 南通 : 0.3 % 张家口 : 2.4 % 张家口 : 2.4 % 无锡 : 0.3 % 无锡 : 0.3 % 杭州 : 0.4 % 杭州 : 0.4 % 洛杉矶 : 0.1 % 洛杉矶 : 0.1 % 济南 : 0.1 % 济南 : 0.1 % 深圳 : 0.4 % 深圳 : 0.4 % 温州 : 0.1 % 温州 : 0.1 % 石家庄 : 0.6 % 石家庄 : 0.6 % 福州 : 0.2 % 福州 : 0.2 % 芒廷维尤 : 10.1 % 芒廷维尤 : 10.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 77.9 % 西宁 : 77.9 % 诺沃克 : 0.1 % 诺沃克 : 0.1 % 郑州 : 0.1 % 郑州 : 0.1 % 阿姆斯特丹 : 0.1 % 阿姆斯特丹 : 0.1 % 其他 其他 China Singapore 上海 北京 南宁 南通 张家口 无锡 杭州 洛杉矶 济南 深圳 温州 石家庄 福州 芒廷维尤 苏州 西宁 诺沃克 郑州 阿姆斯特丹