| Citation: | Li Gang. The Nonparametric Estimation of the Next Failure Time[J]. Applied Mathematics and Mechanics, 1997, 18(1): 91-94. | 
	                | [1] | 
					 J. R.Blum and V. Susarla, Maximal deviation theory of density and failure rate function estimates based on censored data, Multivariate Analysis V. (P. R. Krishnaiah, Ed.),North-Holland Amsterdam (1980), 213-222. 
					
					 | 
			
| [2] | 
					 S. Diehl and W. Stute, Kernel density and hazard function estimation in the presence of censoring, J Multivariate Analysis, 25 (1988), 299-310. 
					
					 | 
			
| [3] | 
					 Liu Regina and J. Van Ryzin, A historam of the hazard rate with censored data, Ann.Stalist., 13 (1985), 592-605. 
					
					 | 
			
| [4] | 
					 A. Földes, L. Reitö and B. B. Winter, Strong consistency properties of nonparametric estimators for randomly censored data, II. Estimation of density and failure rate,Period Math. Hungar, 12 (1981), 15-29. 
					
					 | 
			
| [5] | 
					 M. A. Tanner and W. H. Wong, The estimation of the hazard function from randomly censored data by the kernel method, Ann Statist., 11 (1983), 989-993. 
					
					 | 
			
| [6] | 
					 黎子良、郑祖康,《生存分析》,浙江科学技术出版社,杭州(1993). 
					
					 |