Wang Min-zhong. Application of the Finite Part of a Divergent Integral in the Theory of Elasticity[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1071-1078.
Citation: Wang Min-zhong. Application of the Finite Part of a Divergent Integral in the Theory of Elasticity[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1071-1078.

Application of the Finite Part of a Divergent Integral in the Theory of Elasticity

  • Received Date: 1984-09-19
  • Publish Date: 1985-12-15
  • Using the finite part of a divergent integral, we transform Kelvin's solutions, Boussinesq's solutions and Mindlin's solutions in the three-dimensional theory of elasticity into corresponding solutions in the two-dimensional theory. Besides, its application in plane problems is also given.
  • loading
  • [1]
    Flamant,M.,Sorla répartition des pressions dans un solide rectangulaire chargé transversalement,Compt.Rend.,114(1892),1465-1468.
    [2]
    铁摩辛柯、古地尔著,《弹性理论》,徐芝纶、吴永祯译,人民教育出版社(1365).
    [3]
    武际可、王敏中,《弹性力学引论》,北京大学出版社(1981).
    [4]
    钱伟长、叶开沅,《弹性力学》,科学出版社(1980).
    [5]
    Mindlin,R.D.,Force at a point in the interior of a semi-infinite solid,Physics,7(1936).
    [6]
    Луръе,А/И/.Просмрансмэенные Забачц Теоцц Упрусосмц.ГИТЛ(1955).
    [7]
    Melan,E.,Der spannungszustand der durch eine einzelkroft in beanspruchten halbacheibe,ZAMM,12(1932),343-346.
    [8]
    森口繁一,《平面弹性论》,上海科学技术出版社(1962),79-80.
    [9]
    徐秉业,《弹性与塑性力学》,例题与习题,机械工业出版社(1981).
    [10]
    Hadamard,J.S.,Le Probleme de Cauchy et les Équations Eux,Derives Partielles Lineaires Hyperboliques,Paris(1932).
    [11]
    盖尔芳特,U.М Г,Е.希洛夫,《广义函数》,科学出版社(1965).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1819) PDF downloads(829) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return