| Citation: | Lin Chang, Li Ji-bin, Liu Zeng-rong. The Relaxational Oscillation Solution for Fitzhugh’s Nerve Conduction Equation[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1079-1086. | 
	                | [1] | 
					 Fitzhugh,R.,Thresholds and plateaus in the Hodgkin-Huxley nerve equations,J.Gen.Phys.,43(1960). 
					
					 | 
			
| [2] | 
					 Troy,W.C.,Bifurcation phenomena in Fitzhugh's nerve conduction equation,J.Math.Anal.Appl.,54(1976),678-690. 
					
					 | 
			
| [3] | 
					 Hsü,I.D.and N.D.Kazarinoff,An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model,J.Math.Anal.Appl.,55(1976),61-89. 
					
					 | 
			
| [4] | 
					 Hsü,I.D.,A higher order Hopf bifurcation formula and its application to Fitzhugh's nerve conduction equations,J.Math.Anal.Appl.,60,1(1977),47-57. 
					
					 | 
			
| [5] | 
					 Hadeler,K.P.,etc.,Generation of the nervous impulse and periodic oscillations,Biol.Cybernet.,23(1976),211-218. 
					
					 | 
			
| [6] | 
					 G(?)bber,F.and K.D.Willamowski,Liapunov approach to multiple Hopf bifurcation,J Math.Anal.Appl.,71(1979),333-350. 
					
					 | 
			
| [7] | 
					 Negrini,P.and L.Salvadori,Attraction and Hopf bifurcation,Nonlinear Analysis,3,1(1979),87-99. 
					
					 | 
			
| [8] | 
					 Okuda,M.,A new method of nonlinear analysis for threshold and shaping actions in transient states,Prog.Theory Phys.,66,1(1981),90-100. 
					
					 |