Citation: | HE Yin-nian. Taylor Expansion Method for the Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(4): 481-488. |
[1] |
Temam R.Infinite Dimensional Dynamical Systems in Mechanics and Physics[M].New York,Berlin,Heidelberg,London: Springer-Verlag,1988.
|
[2] |
Foias C,Sell G R,Temam R.Inertial manifolds for the nonlinear evolutionary equations[J].J Differential Equations,1988,73(2):309—353. doi: 10.1016/0022-0396(88)90110-6
|
[3] |
Ambrosetti A,Prodi G.A Primer of Nonlinear Analysis[M].Cambridge: Cambridge University Press, 1995.
|
[4] |
陈铭俊,陈仲英.算子方程及其投影近似解[M].广州:广东科技出版社, 1992.
|
[5] |
何银年,李开泰.非线性算子方程的Taylor展开方法[J].数学学报,1998,41(2):317—326.
|
[6] |
LI Kai-tai,HUANG Ai-xiang,HE Yin-nian.Full discrete nonlinear Galerkin methods[A].In:YING Lun-gan,GUO Ben-yu Eds.Numerical Methods for Partial Differential Equations[C].Singapore: World Scientific, 1992, 61—82.
|
[7] |
Marion M,Temam R.Nonlinear Galerkin methods[J].SIAM J Numer Anal, 1989,26(5):1139—1157. doi: 10.1137/0726063
|
[8] |
Devulder C,Marion M,Titi E S.On the rate of convergence of nonlinear Galerkin methods[J].Math Comput,1993,60(202):495—514. doi: 10.1090/S0025-5718-1993-1160273-1
|
[9] |
SHEN Jie.Long time stability and convergence for fully discrete nonlinear Galerkin methods[J].Appl Anal,1990,38(4):201—229. doi: 10.1080/00036819008839963
|
[10] |
Heywood J G,Rannacher R.On the question of turbulence modeling by the approximate inertial manifolds and the nonlinear Galerkin method[J].SIAM J Numer Anal,1993,30(6):1603—1621. doi: 10.1137/0730083
|
[11] |
Marion M,XU Jin-chao.Error estmates a new nonlinear Galerkin method based on two-grid finite elements[J].SIAM J Numer Anal,1995,32(4):1170—1184. doi: 10.1137/0732054
|
[12] |
Temam R.Navier-Stokes Equations, Theory and Numerical Analysis[M].Amsterdam: North-Holland,1984.
|
[13] |
Garcia-Archilla B,Novo J,Titi E S.An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations[J].Math Comput,1999,68(227):893—911. doi: 10.1090/S0025-5718-99-01057-1
|
[1] | WANG Bin, ZHOU Yanping, BIE Qunyi. Energy Conservation of the 4 D Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 999-1006. doi: 10.21656/1000-0887.430370 |
[2] | XIE Hong-yan, LI Jie, HE Fang-yi. A Remark on Regularity for the Axisymmetric Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 276-283. doi: 10.21656/1000-0887.370192 |
[3] | QIN Yan-mei, LI Hui, FENG Min-fu. A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137 |
[4] | SHANG Yue-qiang, LUO Zhen-dong. A Parallel Two-Level Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1351-1359. doi: 10.3879/j.issn.1000-0887.2010.11.008 |
[5] | QIN Yan-mei, FENG Min-fu, LUO Kun, WU Kai-teng. Local Projection Stabilized Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(5): 618-630. doi: 10.3879/j.issn.1000-0887.2010.05.013 |
[6] | JIAO Yu-jian, GUO Ben-yu. Mixed Spectral Method for Exterior Problem of Navier-Stokes Equations by Using Generalized Laguerre Functions[J]. Applied Mathematics and Mechanics, 2009, 30(5): 525-537. doi: 10.3879/j.issn.1000-0887.2009.05.003 |
[7] | LI Ji-bin. Exact Traveling Wave Solutions for an Integrable Nonlinear Evolution Equation Given by M. Wadati[J]. Applied Mathematics and Mechanics, 2008, 29(4): 393-397. |
[8] | LI Ji-bin, LI Ming, NA Jing. Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 789-797. |
[9] | SHI Wei-hui, WANG Yue-peng. Impact of Singularity of Navier-Sokes Equation Upon the Atmospheric Motion Equations[J]. Applied Mathematics and Mechanics, 2007, 28(5): 614-618. |
[10] | SHI Wei-hui, WANG Yue-peng, SHEN Chun. Comparison of Stability Between Navier-Stokes and Euler Equations[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1101-1107. |
[11] | HU Jian-lan, ZHANG Han-lin. Analytical Solutions for Some Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2003, 24(5): 545-550. |
[12] | REN Chun-feng, MA Yi-chen. Two-Grid Error Estimates for the Stream Function Form of Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(7): 689-696. |
[13] | LUO Zhen-dong, ZHU Jiang. A Nonlinear Galerkin Mixed Element Method and a Posteriori Error Estimator for the Stationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1061-1072. |
[14] | LUO Zhen-dong, ZHU Jiang, WANG Hui-jun. A Nonlinear Galerkin/Petrov-Least Squares Mixed Element Method for the Stationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(7): 697-706. |
[15] | CHEN Fang-qi, CHEN Yu-shu, WU Zhi-qiang. Global Solution of the Inverse Problem for a Class of Nonlinear Evolution Equations of Dispersive Type[J]. Applied Mathematics and Mechanics, 2002, 23(2): 139-143. |
[16] | XIE Fu-ding, YAN Zhen-ya, ZHANG Hong-qing. Similarity Reductions for the Nonlinear Evolution Equation Arising in the Fermi-Pasta-Ulam Problem[J]. Applied Mathematics and Mechanics, 2002, 23(4): 347-352. |
[17] | HE Yin-nian, LI Kai-tai. Nonlinear Galerkin Method for the Exterior Nonstationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1141-1149. |
[18] | YAN Zhen-ya, ZHANG Hong-qing. Study on Exact Analystical Solutions for Two Systems of Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2001, 22(8): 825-833. |
[19] | CHEN Da-duan, SHI Wei-hui. null[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1293-1300. |
[20] | Shi Wei-hui, Fang Xiao-zuo. Stability of Navier-Stokes Equation(Ⅱ)[J]. Applied Mathematics and Mechanics, 1994, 15(10): 879-883. |