Citation: | ZHAO Yong-xiang, YANG Bing, LIANG Hong-qin, WU Ping-bo, ZENG Jing. New Method for Measuring the Random Thresholds of Long Fatigue Crack Propagation[J]. Applied Mathematics and Mechanics, 2005, 26(6): 701-706. |
[1] |
王孔探,张文毓,秦广义.TA5钛合金的疲劳裂纹扩展门槛值与疲劳裂纹扩展率的关系[J].材料开发与应用,1995,10(3):8—12,19.
|
[2] |
徐人平,段小建,詹肇麟.理论门槛值的研究[J].强度与环境,1995,22(4):12—16.
|
[3] |
丁传富,于辉,吴学仁.LY12CZ铝合金的疲劳门槛值及宽范围裂纹扩展速率研究[J].航空材料学报,2000,20(1):12—17.
|
[4] |
熊峻江,彭俊华,高镇同.断裂韧性KⅠC和断裂门槛值ΔKth可靠性测定方法[J].北京航空航天大学学报,2000,26(6):694—696.
|
[5] |
Clark T R, Herman W A, Hertzberg R W,et al.The influence of the K gradient and Kcmax level on fatigue response during the Kcmax threshold testing of Van 80 steel and Astroloy[J].Internat J Fatigue,1997,19(2):177—182.
|
[6] |
McEvily A J, Renauld M, Bao H,et al. Fatigue fracture-surface roughness and the K-opening level[J].Internat J Fatigue,1997,19(8/9):629—633. doi: 10.1016/S0142-1123(97)00075-3
|
[7] |
Wasén J, Heier E. Fatigue crack growth thresholds—the influence of Young's modulus and fracture surface roughness[J].Internat J Fatigue,1998,20(10):737—742. doi: 10.1016/S0142-1123(98)00034-6
|
[8] |
Lang M. Explanation of an apparent abnormality in fatigue crack growth rate curves in Titanium alloys[J].Acta Mater,1999,47(11):3247—3261. doi: 10.1016/S1359-6454(99)00181-0
|
[9] |
Sivaprasad S, Tarafder S, Tarafder M,et al. An alternative method of decreasing ΔK FCGR testing[J].Internat J Fatigue,2000,22(8):593—600. doi: 10.1016/S0142-1123(00)00029-3
|
[10] |
Meshii T, Watanabe K. Comparison of near threshold fatigue crack growth data by Kmax-constant method with the post-construction codes[J].Nucl Eng Des,2003,220(2):285—292. doi: 10.1016/S0029-5493(02)00387-4
|
[11] |
赵永翔, 黄郁仲, 高庆. 铁道车辆LZ50车轴钢的概率机械性能[J].交通运输工程学报,2003,3(2):11—17.
|
[12] |
赵永翔, 王金诺, 高庆. 确定有限疲劳可靠性数据良好假设分布的一种统一方法[J].中国机械工程,2001,12(12):1343—1347.
|
[13] |
Paris P, Erdogan F. A critical analysis of crack growth laws[J].J Basic Eng,1963,85(3):528—534. doi: 10.1115/1.3656900
|
[14] |
赵永翔,王金诺,高庆.概率循环应力-应变曲线及其估计方法[J].机械工程学报,2000,36(8):102—106.
|