WU Yan-qing, ZHANG Ke-shi. Crack Propagation in Polycrystalline Elastic-Viscoplastic Materials Using Cohesive Zone Models[J]. Applied Mathematics and Mechanics, 2006, 27(4): 454-462.
Citation: WU Yan-qing, ZHANG Ke-shi. Crack Propagation in Polycrystalline Elastic-Viscoplastic Materials Using Cohesive Zone Models[J]. Applied Mathematics and Mechanics, 2006, 27(4): 454-462.

Crack Propagation in Polycrystalline Elastic-Viscoplastic Materials Using Cohesive Zone Models

  • Received Date: 2003-01-21
  • Rev Recd Date: 2005-10-24
  • Publish Date: 2006-04-15
  • Cohesive zone model was used to simulate two-dimensional plane strain crack propagation at the grain level model including grain boundary zones.Simulated results show that the original crack-tip may not be separated firstly in an elastic-viscoplastic polycrystals.The grain interior.s material properties (e.g.strain rate sensitivity) characterize the competitions between plastic and cohesive energy dissipation mechanisms.The higher the strain rate sensitivity is,the larger amount of the external work is transformed into plastic dissipation energy than into cohesive energy,which delays the cohesive zone rupturing.With the strain rate sensitivity decreased,the material property tends to approach the elastic-plastic responses.In this case,the plastic dissipation energy decreases and the cohesive dissipation energy increases which accelerates the cohesive zones debonding.Increasing the cohesive strength or the critical separation displacement will reduce the stress triaxiality at grain interiors and grain boundaries.Enhancing the cohesive zones ductility can improve the matrix materials resistance to void damage.
  • loading
  • [1]
    Xie W D,Sitaraman S K.An experimental technique to determine critical stress intensity factors for delamination initiation[J].Engineering Fracture Mechanics,2003,70(9):1193—1201. doi: 10.1016/S0013-7944(02)00090-5
    [2]
    Dunn M L,Suwito W,Cunningham S.Stress intensities at notch singularities[J].Engineering Fracture Mechanics,1997,57(4):417—430. doi: 10.1016/S0013-7944(97)00019-2
    [3]
    Meith W A,Hill M R.Domain-independent values of the J-integral for cracks in three-dimensional residual stress bearing bodies[J].Engineering Fracture Mechanics,2002,69(12):1301—1314. doi: 10.1016/S0013-7944(02)00007-3
    [4]
    Espinosa H D,Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials—Part Ⅱ Numerial examples[J].Mechanics of Materials,2003,35(3/6):365—394. doi: 10.1016/S0167-6636(02)00287-9
    [5]
    Bjerke T W,Lambros J.Theoretical development and experimental validation of a theramally dissipative cohesive zone model for dynamic fracture of amorphous polymers[J].Jouranl of the Mechanics and Physics of Solids,2003,51(6):1147—1170. doi: 10.1016/S0022-5096(02)00145-X
    [6]
    Dugdale D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100—108. doi: 10.1016/0022-5096(60)90013-2
    [7]
    Barrenblatt G I.The mathematical theory of equilibrium cracks in brittle fracture[J].Advances in Applied Mechanics,1962,7:55—125. doi: 10.1016/S0065-2156(08)70121-2
    [8]
    Needleman A.A continuum model for void nucleation by inclusion debonding[J].J Appl Mech,1987,54:525—531. doi: 10.1115/1.3173064
    [9]
    Li H,Chandra N.Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models[J].International Journal of Plasticity,2003,19(6):849—882. doi: 10.1016/S0749-6419(02)00008-6
    [10]
    Chandra N,Li H,Shet C,et al.Some issues in the application of cohesive zone models for metal-ceramic interfaces[J].International Journal of Solids and Structures,2002,39(10):2827—2855. doi: 10.1016/S0020-7683(02)00149-X
    [11]
    Madhusudhana K S,Narasimhan R.Experimental and numerical investigations of mixed mode crack growth resistance of a ductile adhesive joint[J].Engineering Fracture Mechanics,2002,69(7):865—883. doi: 10.1016/S0013-7944(01)00110-2
    [12]
    Tvergaard V.Crack growth predictions by cohesive zone model for ductile fracture[J].Journal of the Mechanics and Physics of Solids,2001,49(9):2191—2207. doi: 10.1016/S0022-5096(01)00030-8
    [13]
    Kysar J W.Energy dissipation mechanisms in ductile fracture[J].Journal of the Mechanics and Physics of Solids,2003,51(5):795—824. doi: 10.1016/S0022-5096(02)00141-2
    [14]
    Foulk J W,Allen D H,Helms K L E.Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm[J].Compute Methods in Applied Mechanics Engineering,2000,183(1/2):51—66. doi: 10.1016/S0045-7825(99)00211-X
    [15]
    Tvergaard V.Effect of fiber debonding in a whisker-reinforce metal[J].Materials Science Engineering A,1990,125(2):203—213. doi: 10.1016/0921-5093(90)90170-8
    [16]
    Rice J R.Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity[J].Journal of the Mechics and Physics of Solids,1971,19:433—455. doi: 10.1016/0022-5096(71)90010-X
    [17]
    Lemaitre J,Chaboche J L.Mechanics of Solids Materials[M].U K:Cambridge University Press,1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3067) PDF downloads(1367) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return