LI Lin-yuan, XIAO Yi-min. Wavelet-Based Estimators of the Mean Regression Function With Long Memory Date[J]. Applied Mathematics and Mechanics, 2006, 27(7): 789-798.
Citation: LI Lin-yuan, XIAO Yi-min. Wavelet-Based Estimators of the Mean Regression Function With Long Memory Date[J]. Applied Mathematics and Mechanics, 2006, 27(7): 789-798.

Wavelet-Based Estimators of the Mean Regression Function With Long Memory Date

  • Received Date: 2005-01-17
  • Rev Recd Date: 2006-04-09
  • Publish Date: 2006-07-15
  • An asymptotic expansion is provide for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion is shown, when the underlying mean regression function is only piecewise smooth. It is the same with analogous expansion for the kernel estimators. However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.
  • loading
  • [1]
    Hart J D.Kernel regression estimation with time series errors[J].J Roy Statist Soc,Ser B,1991,53:173—187.
    [2]
    Tran L T,Roussas G G,Yakowitz S,et al.Fixed-design regression for linear time series[J].Ann Statist,1996,24:975—991. doi: 10.1214/aos/1032526952
    [3]
    Truong Y K,Patil P N.Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series[J].Ann Inst Statist Math,2001,53:159—178. doi: 10.1023/A:1017928823619
    [4]
    Beran J.Statistics for Long Memory Processes[M].New York:Chapman and Hall,1994.
    [5]
    Hall P,Hart J D.Nonparametric regression with long-range dependence[J].Stochastic Process Appl,1990,36:339—351. doi: 10.1016/0304-4149(90)90100-7
    [6]
    Robinson P M,Hidalgo F J.Time series regression with long-range dependence[J].Ann Statist,1997,25:77—104. doi: 10.1214/aos/1034276622
    [7]
    Csorgo S,Mielniczuk J.Nonparametric regression under long-range dependent normal errors[J].Ann Statist,1995,23:1000—1014. doi: 10.1214/aos/1176324633
    [8]
    Robinson P M.Large-sample inference for nonparametric regression with dependent errors[J].Ann Statist,1997,25:2054—2083. doi: 10.1214/aos/1069362387
    [9]
    Hardle W,Kerkyacharian G,Picard D,et al.Wavelets, Approximation and Statistical Applications[M].Lecture Notes in Statistics, 129.New York:Springer-Verlag,1998.
    [10]
    Donoho D L,Johnstone I M.Minimax estimation via wavelet shrinkage[J].Ann Statist,1998,26:879—921. doi: 10.1214/aos/1024691081
    [11]
    Donoho D L,Johnstone I M,Kerkyacharian G,et al.Wavelet shrinkage: asymptopia? (with discussion)[J].J Roy Statist Soc,Ser B,1995,57:301—369.
    [12]
    Donoho D L,Johnstone I M,Kerkyacharian G,et al.Density estimation by wavelet thresholding[J].Ann Statist,1996,24:508—539. doi: 10.1214/aos/1032894451
    [13]
    Hall P,Patil P.Formulae for mean integated squared error of non-linear waveletbased density estimators[J].Ann Statist,1995,23:905—928. doi: 10.1214/aos/1176324628
    [14]
    Hall P,Patil P.On the choice of smoothing parameter, threshold and truncation in nonparametric regression by nonlinear wavelet methods[J].J Roy Statist Soc,Ser B,1996,58:361—377.
    [15]
    Hall P,Patil P.Effect of threshold rules on performance of wavelet-based curve estimators[J].Statistic Sinica,1996,6:331—345.
    [16]
    Johnstone I M.Wavelet threshold estimators for correlated data and inverse problems: Adaptivity results[J].Statistica Sinica,1999,9:51—83.
    [17]
    Johnstone I M,Silverman B W.Wavelet threshold estimators for data with correlated noise[J].J Roy Statist Soc,Ser B,1997,59:319—351. doi: 10.1111/1467-9868.00071
    [18]
    Wang Y.Function estimation via wavelet shrinkage for long-memory data[J].Ann Statist,1996,24:466—484. doi: 10.1214/aos/1032894449
    [19]
    Daubechies I.Ten Lectures on Wavelets[M].Philadelphia:SIAM,1992.
    [20]
    Cohen A,Daubechies I,Vial P.Wavelets on the interval and fast wavelet transforms[J].Appl Comput Harm Anal,1993,1:54—82. doi: 10.1006/acha.1993.1005
    [21]
    Abry P,Veitch D.Wavelet analysis of long-range-dependent traffic[J].IEEE Trans on Inform Theory,1998,44:2—15. doi: 10.1109/18.650984
    [22]
    Delbeke L,Van Assche Walter.A wavelet based estimator for the parameter of selfsimilarity of fractional Brownian motion[A].In:3rd International Conference on Approximation and Optimization in the Caribbean[C].Puebla:1995,Soc Mat Mexicana,M′exico:Aportaciones Mat. Comun 24,1998,65—76.
    [23]
    Fox R,Taqqu M.Noncentral limit theorems for quadratic forms in random variables having long-range dependence[J].Ann Probab,1985,13:428—446. doi: 10.1214/aop/1176993001
    [24]
    Mojor P.Multiple Wiener-It Integrals[M].Lect Notes in Math 849,New York:Springer-Verlag,1981.
    [25]
    Durrett R.Probability: Theorey and Examples[M].Second Edition:Duxbury Press,1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2363) PDF downloads(746) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return