| Citation: | WANG Lin-xiang, Roderick V. N. Melnik. Differential-Algebraic Approach to Coupled Problems of Dynamic Thermoelasticity[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1036-1046. | 
	                | [1] | 
					 Melnik R V N.Convergence of the operator-difference scheme to generalised solutions of a coupled field theory problem[J].J Difference Equations Appl,1998,4(2):185—212. doi:  10.1080/10236199808808136 
					
					 | 
			
| [2] | 
					 Melnik R V N.Discrete models of coupled dynamic thermoelasticity for stress-temperature formulations[J].Appl Math Comput,2001,122(1):107—132. doi:  10.1016/S0096-3003(00)00026-6 
					
					 | 
			
| [3] | 
					 Melnik R V N,Roberts A J,Thomas K A.Coupled thermomechanical dynamics of phase transitions in shape memory alloys and related hysteresis phenomena[J].Mechanics Research Communications,2001,28(6):637—651. doi:  10.1016/S0093-6413(02)00216-1 
					
					 | 
			
| [4] | 
					 Melnik R V N,Roberts A J,Thomas K A.Phase transitions in shape memory alloys with hyperbolic heat conduction and differential algebraic models[J].Computational Mechanics,2002,29(1):16—26. doi:  10.1007/s00466-002-0311-5 
					
					 | 
			
| [5] | 
					 Strunin D V,Melnik R V N,Roberts A J.Coupled thermomechanical waves in hyperbolic thermoelasticity[J].J Thermal Stresses,2001,24(2):121—140. doi:  10.1080/01495730150500433 
					
					 | 
			
| [6] | 
					 Melnik R V N,Roberts A J,Thomas K A.Computing dynamics of copper-based SMA via center manifold reduction of 3D models[J].Computational Material Science,2000,18(3/4):255—268. doi:  10.1016/S0927-0256(00)00104-X 
					
					 | 
			
| [7] | 
					 Niezgodka M,Sprekels J.Convergent numerical approximations of the thermomechanical phase transitions in shape memory alloys[J].Numer Math,1991,58:759—778. 
					
					 | 
			
| [8] | 
					 Rawy E K,Iskandar L,Ghaleb A F.Numerical solution for a nonlinear, one-dimensional problem of thermoelasticity[J].J Comput Appl Math,1998,100(1):53—76. doi:  10.1016/S0377-0427(98)00134-4 
					
					 | 
			
| [9] | 
					 Abd-Alla A N,Ghaleb A F,Maugin G A.Harmonic wave generation in nonlinear thermoelasticity[J].Internat J Engrg Sci,1994,32(7):1103—1116. doi:  10.1016/0020-7225(94)90074-4 
					
					 | 
			
| [10] | 
					 Jiang S.Numerical solution for the Cauchy problem in nonlinear 1-D thermoelasticity[J].Computig,1990,44(2):147—158. doi:  10.1007/BF02241864 
					
					 | 
			
| [11] | 
					 Abou-Dina M S,Ghaleb A F.On the boundary integral formulation of the plane theory of elasticity with applications (analytical aspects)[J].Journal of Computational and Applied Mathematics,1999,106(1):55—70. doi:  10.1016/S0377-0427(99)00052-7 
					
					 | 
			
| [12] | 
					 Yang M T,Park K H,Banerjee P K.2D and 3D transient heat conduction analysis by BEM via particular integrals[J].Comput Methods Appl Mech Engrg,2002,191(15/16):1701—1722. doi:  10.1016/S0045-7825(01)00351-6 
					
					 | 
			
| [13] | 
					 Sherief H H,Megahed F A.A two-dimensional thermoelasticity problem for a half space subjected to heat sources[J].Internat J Solids and Structures,1999,36(9):1369—1382. doi:  10.1016/S0020-7683(98)00019-5 
					
					 | 
			
| [14] | 
					 Banerjee P K.The Boundary Element Methods in Engineering[M].London:McGrau-Hill,1994,1—100. 
					
					 | 
			
| [15] | 
					 Park K H,Banerjee P K.Two-and three-dimensional transient thermoelastic analysis by BEM via particular integrals[J].Internat J Solids and Structures,2002,39:2871—2892. doi:  10.1016/S0020-7683(02)00125-7 
					
					 | 
			
| [16] | 
					 Hosseini-Tehrani P,Eslami M R.BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity[J].Engineering Analysis With Boundary Elements,2000,24(3):249—257. doi:  10.1016/S0955-7997(99)00063-6 
					
					 | 
			
| [17] | 
					 Pawlow I.Three-dimensional model of thermomechanical evolution of shape memory materials[J].Control and Cybernetics,2000,29(1):341—365. 
					
					 | 
			
| [18] | 
					 Ichitsubo T,Tanaka K,Koiva M,et al.Kinetics of cubic to tegragonal transformation under external field by the time-dependent Ginzburg-Landau approach[J].Phys Rev B,2000,62(9):5435—5441. doi:  10.1103/PhysRevB.62.5435 
					
					 | 
			
| [19] | 
					 Jacobs A E. Solitons of the square-rectangular martensitic transformation[J].Phys Rev B,1985,31(9):5984—5989. doi:  10.1103/PhysRevB.31.5984 
					
					 | 
			
| [20] | 
					 Jacobs A E.Landau theory of structures in tegragonal-orthorhombic ferroelastics[J].Phys Rev B,2000,61(10):6587—6595. doi:  10.1103/PhysRevB.61.6587 
					
					 | 
			
| [21] | 
					 Chen J,Dargush G F.BEM for dynamic poroelastic and thermoelastic analysis[J].J Solids Struct,1995,32(15):2257—2278. doi:  10.1016/0020-7683(94)00227-N 
					
					 | 
			
| [22] | 
					 Timoshenko S P,Goodier J N.Theory of Elasticity[M].3rd edition.New York:McGraw-Hill,1970,421—480. 
					
					 | 
			
| [23] | 
					 Hairer E,Norsett S P,Wanner G.Solving Ordinary Differential Equations Ⅱ—Stiff and Differential Algebraic Problems[M].Berlin:Springer-Verlag,1996,210—250. 
					
					 | 
			
| [24] | 
					 Jiang S.On global smooth solutions to the one-dimensional equations of nonlinear inhomogeneous thermoelasticity[J].Nonlinear Analysis,1993,20(10):1245—1256. doi:  10.1016/0362-546X(93)90154-K 
					
					 |