留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非定常Stokes方程的降阶稳定化CN有限体积元外推模型

腾飞 罗振东

腾飞, 罗振东. 非定常Stokes方程的降阶稳定化CN有限体积元外推模型[J]. 应用数学和力学, 2014, 35(9): 986-1001. doi: 10.3879/j.issn.1000-0887.2014.09.005
引用本文: 腾飞, 罗振东. 非定常Stokes方程的降阶稳定化CN有限体积元外推模型[J]. 应用数学和力学, 2014, 35(9): 986-1001. doi: 10.3879/j.issn.1000-0887.2014.09.005
TENG Fei, LUO Zhen-dong. A Reduced-Order Stabilized CNFVE Extrapolating Model for Non-Stationary Stokes Equations[J]. Applied Mathematics and Mechanics, 2014, 35(9): 986-1001. doi: 10.3879/j.issn.1000-0887.2014.09.005
Citation: TENG Fei, LUO Zhen-dong. A Reduced-Order Stabilized CNFVE Extrapolating Model for Non-Stationary Stokes Equations[J]. Applied Mathematics and Mechanics, 2014, 35(9): 986-1001. doi: 10.3879/j.issn.1000-0887.2014.09.005

非定常Stokes方程的降阶稳定化CN有限体积元外推模型

doi: 10.3879/j.issn.1000-0887.2014.09.005
基金项目: 国家自然科学基金(11271127);贵州省教育厅自然科学研究项目(黔教合KY字[2013]207)
详细信息
    作者简介:

    腾飞(1986—), 女, 吉林人, 讲师, 硕士(E-mail: tengfeikl@126.com);罗振东(1958—), 男, 广西桂平人, 教授, 博士, 博士生导师(通讯作者. E-mail: zhdluo@ncepu.edu.cn).

  • 中图分类号: O242.21

A Reduced-Order Stabilized CNFVE Extrapolating Model for Non-Stationary Stokes Equations

Funds: The National Natural Science Foundation of China(11271127)
  • 摘要: 利用稳定化的Crank-Nicolson(CN)有限体积元方法和特征投影分解方法,建立非定常Stokes方程的一种自由度很少、精度足够高的降阶稳定化CN有限体积元外推模型,并给出这种降阶稳定化CN有限体积元外推模型解的误差估计和算法的实现.最后用数值例子说明数值结果与理论结果相吻合,并阐明这种降阶稳定化CN有限体积元外推模型的优越性.
  • [1] Chung T.Computational Fluid Dynamics[M]. Cambridge: Cambridge University Press, 2002.
    [2] Ye X. On the relationship between finite volume and finite element methods applied to the Stokes equations[J].Numerical Methods for Partial Differential Equation,2001,17: 440-453.
    [3] Yang M, Song H L. A postprocessing finite volume method for time-dependent Stokes equations[J].Applied Numerical Mathematics,2009, 59(8): 1922-1932.
    [4] Li R H, Chen Z Y, Wu W.Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods[M]. New York: Marcel Dekker Inc, 2000.
    [5] An J, Sun P, Luo Z D, Huang X. A stabilized fully discrete finite volume element formulation for non-stationary Stokes equation[J].Mathematica Numerica Sinica,2011,33(2): 213-224.
    [6] Holmes P, Lumley J L, Berkooz G.Turbulence, Coherent Structures, Dynamical Systems and Symmetry [M]. Cambridge: Cambridge University Press, 1996.
    [7] Fukunaga K.Introduction to Statistical Recognition[M]. New York: Academic Press, 1990.
    [8] Jolliffe I T.Principal Component Analysis[M]. Berlin: Springer-Verlag, 2002.
    [9] Selten F. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model [J].J Atmosph Sci,1997,54: 2099-2114.
    [10] Sirovich L. Turbulence and the dynamics of coherent structures: part I—III [J]. Quarterly of Applied Mathematics, 1987,45: 561-590.
    [11] Luo Z D, Xie Z H, Shang Y Q, Chen J. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations[J].Journal of Computational and Applied Mathematics,2011,235(8): 2098-2111.
    [12] Luo Z D, Li H, Zhou Y J, Huang X. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J].Journal of Mathematical Analysis and Applications,2012,385: 310-321.
    [13] Luo Z D, Li H, Chen J. A reduced-order finite volume element formulation based on POD method and implementation of its extrapolation algorithm for unsaturated soil water flow equation (in Chinese)[J]. Sci Sin Math,2012,42(12): 1263-1280.
    [14] Luo Z D, Li H, Sun P, An J, Navon I M. A reduced finite volume element formulation based on POD method and numerical simulation for two-dimensional solute transport problems[J].Mathematics and Computers in Simulation,2013,89: 50-68.
    [15] Adams R A. Sobolev Spaces[M]. New York: Academic Press, 1975.
    [16] 罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.(LUO Zheng-dong. The Foundations and Applications of Mixed Finite Element Methods[M]. Beijing: Science Press, 2006.(in Chinese))
    [17] Temam R. Navier-Stokes Equations[M]. 3rd ed. New York, Amesterdam, 1984.
    [18] Rudin W. Functional and Analysis[M]. 2nd ed. New York: McGraw-Hill Companies, Inc, 1973.
  • 加载中
计量
  • 文章访问数:  1619
  • HTML全文浏览量:  175
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-15
  • 修回日期:  2014-06-06
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回