留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

血管外给药的非线性房室模型解的逼近

胡晓虎 唐三一

胡晓虎, 唐三一. 血管外给药的非线性房室模型解的逼近[J]. 应用数学和力学, 2014, 35(9): 1033-1045. doi: 10.3879/j.issn.1000-0887.2014.09.009
引用本文: 胡晓虎, 唐三一. 血管外给药的非线性房室模型解的逼近[J]. 应用数学和力学, 2014, 35(9): 1033-1045. doi: 10.3879/j.issn.1000-0887.2014.09.009
HU Xiao-hu, TANG San-yi. Approximate Solutions to the Nonlinear Compartmental Model for Extravascular Administration[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1033-1045. doi: 10.3879/j.issn.1000-0887.2014.09.009
Citation: HU Xiao-hu, TANG San-yi. Approximate Solutions to the Nonlinear Compartmental Model for Extravascular Administration[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1033-1045. doi: 10.3879/j.issn.1000-0887.2014.09.009

血管外给药的非线性房室模型解的逼近

doi: 10.3879/j.issn.1000-0887.2014.09.009
基金项目: 国家自然科学基金(11171199)
详细信息
    作者简介:

    唐三一(1970—), 男, 教授, 博士生导师(通讯作者. E-mail: sytang@snnu.edu.cn).

  • 中图分类号: O241.8;O242

Approximate Solutions to the Nonlinear Compartmental Model for Extravascular Administration

Funds: The National Natural Science Foundation of China(11171199)
  • 摘要: 药物动力学模型的解析求解公式在新药设计特别是药物动力学参数确定等方面具有非常重要的意义.近年来,由于非线性米氏消除速率过程确定的药物动力学模型解析求解公式的获得,使得大多数单房室模型的解析解基本确定.但是,由于刻画血管外给药的非线性米氏药物动力学模型是一个非自治系统,进而不可能寻求其解析求解公式.该文的目的是讨论一次性血管外给药和周期血管外给药下非线性药物动力学模型解的逼近问题.采用微分方程和脉冲微分方程的比较定理并借助Lambert W 函数的定义以及相关性质给出模型的不同上下界,估计模型解的逼近程度,并通过数值模拟进行验证.
  • [1] 唐三一, 肖燕妮. 单种群动力系统[M]. 北京: 科学出版社, 2008.(TANG Shan-yi, XIAO Yan-ni. Single Population Dynamics[M]. Beijing: Science Press, 2008.(in Chinese))
    [2] 肖燕妮, 周义仓, 唐三一. 生物数学原理[M]. 西安: 西安交通大学出版社, 2011.(XIAO Yan-ni, ZHOU Yi-cang, TANG Shan-yi. Theory of Biomathematics[M]. Xi’an: Xi’an Jiaotong University Press, 2011.(in Chinese))
    [3] 蒋新国. 现代药物动力学[M]. 上海: 人民卫生出版社, 2011.(JIANG Xin-guo. Modern Pharmacokinetic[M]. Shanghai: People Health Press, 2011.(in Chinese))
    [4] Cornish-Bowden A. Fundamentals of Enzyme Kinetics[M]. Portland Press, 1995.
    [5] Wagner J G. Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics[J]. Journal of Pharmacokinetics and Biopharmaceutics,1973,1(2): 103-121.
    [6] Gerber N, Wagner J G. Explanations of dose-dependent decline of diphenylhydantoin plasa levels by fitting to the intergrated form of the Michaelis-Menten equation[J]. Research Communications in Chemical Pathology and Pharmacology,1972,3(3): 455-466.
    [7] Lundquist F, Wolthers H. The kinetics of alcohol elimination in man[J]. Acta Pharmacologica et Toxicologica,1958,14(3): 265-289.
    [8] Beal S L. On the solution to the Michaelis-Menten equation[J]. Journal of Pharmacokinetics and Biopharmaceutics,1982,10(1): 109-119.
    [9] Beal S L. Computation of the explicit solution to the Michaelis-Menten equation[J]. Journal of Pharmacokinetics and Biopharmaceutics,1983,11(6): 641-657.
    [10] Godfrey K R ,Fitch W R. On the identification of Michaels-Menten elimination parameters from a single dose-response curve[J]. Journal of Pharmacokinetics and Biopharmaceutics,12(2): 193-221.
    [11] Goudar C T, Harris K S, McInerney M J, Suflita J M. Progress curve analysis for enzyme and mocrobial kinetic reactions using explicit solutions based on the Lambert W function[J]. Journal of Microbiological Methods,2004,59(3): 317-326.
    [12] Schnell S, Mendoza C. Closed form solution for time-dependent enzyme kinetics[J]. Journal of Theoretical Biology,1997,187(2): 207-212.
    [13] TANG Shan-yi, XIAO Yan-ni. One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window:an analytical approach[J]. Journal of Pharmacokinetics and Biopharmaceutics,2007,34(6): 807-827.
    [14] Mu S, Ludden T M. Estimation of population pharmacokinetic parameters in the presebce of non-compliance[J]. Journal of Pharmacokinetics and Biopharmaceutics,2003,30(1): 53-81.
    [15] Friberg L E, Isbister G K, Hackett L P, Duffull S B. The population pharmacokinetics of citalopram after deliberate self-poisoning :a baysian approach[J]. Journal of Pharmacokinetics and Biopharmaceutics,2005,32(3/4): 571-605.
    [16] Corlesss R M, Gonnet G H, Hare D E G, Jeffrey D J, Knuth D E. On the Lambert W function[J]. Advances in Computational Mathematics,1996,5(1): 329-359.
    [17] Wagner J G. Time to reach steady state and prediction of steady state concentrations for drugs obeying Michaelis-Menten eliminations kinetics[J]. Journal of Pharmacokinetics and Biopharmaceutics,1978,6(3): 209-225.
    [18] Duggleby R G. Analysis of progress curves for enzymecatalyzed reactions: application to unsteable enzymes,coupled reactions and transient-state kinetics[J]. Biochimica et Biophysica Acta,1994,1205(2): 268-274.
    [19] Meiske W. An approximate solution of the Machielis-Menten machanism for quasi-steady state and quasi-equilibrium[J]. Mathematical Biosciences,1978,42(1/2): 63-71.
    [20] Tang S Y, Cheke R A. State-dependent impulsive models of intergrated pest management(IPM) strategies and their dynamical consequeces[J]. Journal of Mathematical Biology,2005,50(3): 257-292.
    [21] Tang S Y, Xiao Y N, Chen L S, Cheke R A. Integrated pest management models and their dynamical behavior[J]. Bulletin of Mathematical Biology,2005,67(1): 115-135.
  • 加载中
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  150
  • PDF下载量:  1097
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-18
  • 修回日期:  2014-06-16
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回