留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饱和多孔弹性杆流固耦合动力响应的保结构算法

刘雪梅 邓子辰 胡伟鹏

刘雪梅, 邓子辰, 胡伟鹏. 饱和多孔弹性杆流固耦合动力响应的保结构算法[J]. 应用数学和力学, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106
引用本文: 刘雪梅, 邓子辰, 胡伟鹏. 饱和多孔弹性杆流固耦合动力响应的保结构算法[J]. 应用数学和力学, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106
LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106
Citation: LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106

饱和多孔弹性杆流固耦合动力响应的保结构算法

doi: 10.21656/1000-0887.370106
基金项目: 国家自然科学基金(11372252;11372253);中央高校基金(2014G1121096)
详细信息
    作者简介:

    刘雪梅(1980—),女,讲师,硕士(通讯作者. E-mail: liuxuemei@chd.edu.cn);邓子辰(1964—),男,教授,博士生导师(E-mail: dweifan@nwpu.edu.cn).

  • 中图分类号: O343

Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods

Funds: The National Natural Science Foundation of China(11372252;11372253)
  • 摘要: 研究了不可压饱和多孔弹性杆的流固耦合动力响应问题.基于多孔介质理论,根据多孔介质流固混合物动量方程、孔隙流体动量方程及体积分数方程,建立流固耦合不可压饱和多孔弹性杆的轴向振动方程;引入正则变量,构造饱和多孔弹性杆轴向振动方程的广义多辛保结构形式、广义多辛守恒律及广义多辛局部动量误差;采用中点Box离散方法得到轴向振动方程的广义多辛离散格式、广义多辛守恒律数值误差及局部动量数值误差;数值模拟不可压饱和多孔弹性杆的轴向振动过程及流相渗流速度分布,考察了流固两相耦合系数对轴向振动过程及广义多辛守恒律误差和局部动量误差的影响.结果表明,已构造的广义多辛保结构算法具有很高的精确性和长时间的数值稳定性.
  • [1] 陈炜昀, 夏唐代, 陈伟, 翟朝娇. 平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播[J]. 应用数学和力学, 2012,33(7): 781-795.(CHEN Wei-yun, XIA Tang-dai, CHEN Wei, ZHAI Chao-jiao. Propagation of plane P-waves at the interface between an elastic solid and an unsaturated poroelastic medium[J]. Applied Mathematics and Mechanics,2012,33(7): 781-795.(in Chinese))
    [2] Lee S, Wheeler M F, Wick T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[J]. Computer Methods in Applied Mechanics and Engineering,2016,305: 111-132.
    [3] Dehghan M, Jamal-Abad M T, Rashidi S. Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers[J]. Energy Conversion and Management,2014,85: 264-271.
    [4] 王克用, 王大中, 李培超. 多孔介质平板通道传热模型的两种求解方法[J]. 应用数学和力学, 2015,36(5): 494-504.(WANG Ke-yong, WANG Da-zhong, LI Pei-chao. Two decoupling methods for the heat transfer model of a plate channel filled with a porous medium[J]. Applied Mathematics and Mechanics,2015,36(5): 494-504.(in Chinese))
    [5] 施飞, 程晓民, 张韬杰, 董湘怀. 树脂传递成型过程中温度场的数值研究[J]. 应用数学和力学, 2016,37(3): 256-265.(SHI Fei, CHENG Xiao-min, ZHANG Tao-jie, DONG Xiang-huai. Numerical research of temperature field during resin transfer molding[J]. Applied Mathematics and Mechanics,2016,37(3): 256-265.(in Chinese))
    [6] 宋少沪, 卢欣, 杨骁. 饱和多孔弹性Timoshenko梁的非线性变形分析[J]. 力学季刊, 2012,33(1): 121-129.(SONG Shao-hu, LU Xin, YANG Xiao. Nonlinear deformation analysis of saturated poroelastic Timoshenko beam[J]. Chinese Quarterly of Mechanics,2012,33(1): 121-129.(in Chinese))
    [7] 杨骁, 吕新华. 饱和多孔弹性Timoshenko梁的大挠度分析[J]. 固体力学学报, 2012,33(2): 103-111.(YANG Xiao, Lü Xin-hua. Large deflection analysis of saturated poroelastic Timoshenko beam[J]. Chinese Journal of Solid Mechanics,2012,33(2): 103-111.(in Chinese))
    [8] CAI Jia-xiang, YANG Bin, LIANG Hua. Multisymplectic implicit and explicit methods for Klein-Gordon-Schr?dinger equations[J]. Chinese Physics B,2013,22(3): 99-105.
    [9] LI Hao-chen, SUN Jian-qiang, QIN Meng-zhao. New explicit multi-symplectic scheme for nonlinear wave equation[J]. Applied Mathematics and Mechanics(English Edition ), 2014,35(3): 369-380.
    [10] McDonald F, Mclachlan R, Moore B, Quispel R. Travelling wave solutions of multisymplectic discretizations of semi-linear wave equations[J]. Mathematics,2015,69(3/4): 290-303.
    [11] HU Wei-peng, DENG Zi-chen, QIN Yu-yue. Multi-symplectic method to simulate soliton resonance of (2+1)-dimensional Boussinesq equation[J]. Journal of Geometric Mechanics,2013,5(3): 295-318.
    [12] HU Wei-peng, DENG Zi-chen, ZHANG Yu. Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation[J]. Computer Physics Communications,2014,185(7): 2020-2028.
    [13] 秦于越, 邓子辰, 胡伟鹏. 无限维Hamilton系统稳态解的保结构算法[J]. 应用数学和力学, 2014,35(1): 22-28.(QIN Yu-yue, DENG Zi-chen, HU Wei-peng. Structure-preserving algorithm for steady-state solution to the infinite dimensional Hamilton system[J]. Applied Mathematics and Mechanics,2014,35(1): 22-28.(in Chinese))
    [14] HU Wei-peng, DENG Zi-chen, HAN Song-mei, ZHANG Wen-rong. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs[J]. Journal of Computational Physics,2013,235: 394-406.
    [15] HU Wei-peng, DENG Zi-chen, WANG Bo, OUYANG Hua-jiang. Chaos in an embedded single-walled carbon nanotube[J]. Nonlinear Dynamics,2013,72(1): 389-398.
    [16] HU Wei-peng, DENG Zi-chen. Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series[J]. Nonlinear Dynamics,2015,79(1): 325-333.
    [17] 刘雪梅, 邓子辰, 胡伟鹏. 饱和多孔弹性杆热传导的广义多辛方法及其数值实现[J]. 西北工业大学学报, 2015,33(2): 265-270.(LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Generalized multi-symplectic method and numerical experiment for thermal conduction of saturated poroelastic rod[J]. Journal of Northwest Polytechnical University,2015,33(2): 265-270.(in Chinese))
    [18] YANG Xiao. Gurtin-type variational principles for dynamics of a non-local thermal equilibrium saturated porous medium[J]. Acta Mechanics Solida Sinica,2005,18(1): 37-45.
  • 加载中
计量
  • 文章访问数:  943
  • HTML全文浏览量:  119
  • PDF下载量:  579
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-08
  • 修回日期:  2016-05-07
  • 刊出日期:  2016-10-15

目录

    /

    返回文章
    返回