留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常曲率大深宽比河湾拟序扰动结构与床面响应关系探讨

高术仙 徐海珏 白玉川

高术仙, 徐海珏, 白玉川. 常曲率大深宽比河湾拟序扰动结构与床面响应关系探讨[J]. 应用数学和力学, 2016, 37(10): 1100-1117. doi: 10.21656/1000-0887.370094
引用本文: 高术仙, 徐海珏, 白玉川. 常曲率大深宽比河湾拟序扰动结构与床面响应关系探讨[J]. 应用数学和力学, 2016, 37(10): 1100-1117. doi: 10.21656/1000-0887.370094
GAO Shu-xian, XU Hai-jue, BAI Yu-chuan. Coherent Disturbance Structures and Bed Topography Responses in Large Depth-to-Width Ratio River Bends With Constant Curvatures[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1100-1117. doi: 10.21656/1000-0887.370094
Citation: GAO Shu-xian, XU Hai-jue, BAI Yu-chuan. Coherent Disturbance Structures and Bed Topography Responses in Large Depth-to-Width Ratio River Bends With Constant Curvatures[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1100-1117. doi: 10.21656/1000-0887.370094

常曲率大深宽比河湾拟序扰动结构与床面响应关系探讨

doi: 10.21656/1000-0887.370094
基金项目: 国家自然科学基金(51279124;51021004;50979066)
详细信息
    作者简介:

    高术仙(1987—),女,博士生(E-mail: gaoshuxianqixi@126.com);白玉川(1967—),男,教授,博士(通讯作者. E-mail: ychbai@tju.edu.cn).

  • 中图分类号: O158

Coherent Disturbance Structures and Bed Topography Responses in Large Depth-to-Width Ratio River Bends With Constant Curvatures

Funds: The National Natural Science Foundation of China(51279124;51021004;50979066)
  • 摘要: 蜿蜒河流床面形态既是其复杂动力结构响应的结果,同时也是决定河流进一步演化方向的重要因素.以蜿蜒河流中一种典型的大深宽比河湾为背景,探索其动力结构与床面响应的关系,将黏性不可压缩流体方程、泥沙输移方程和床面变形方程耦合,通过摄动方法求解床面响应,分析床面形态变化特性.研究成果显示在水流二维扰动作用下,河道中浅滩深槽呈现规则响应.当弯曲度等于0时,床面响应形态围绕河道中轴线基本呈反对称分布;当弯曲度不等于0时,床面响应形态呈不对称分布,中轴线向凹岸偏移.该文给出了由Reynolds(雷诺)数、扰动波数、床面形态增减率等构成的床面响应发展趋势稳定关系的判别方法.
  • [1] Johannesson H, Parker G. Flow field and bed topography in river meanders[C]// Proceedings of Hydraulic Engineering.New York: ASCE, 1988: 684-689.
    [2] Johannesson H,Parker G. Linear Theory of River Meanders [M]//Ikeda S, Parker G, ed. River Meandering.Washington DC: American Geophysical Union, 1989: 181-214.
    [3] Seminara G. Meanders[J]. Journal of Fluid Mechanics, 2006,554: 271-297.
    [4] Pittaluga M B, Nobile G, Seminara G. A nonlinear model for river meandering[J]. Water Resource Research, 2009,45(4): 1-22.
    [5] Martin R L, Jerolmack D J. Origin of hysteresis in bed form response to unsteady flows[J]. Water Resource Research,2013,49(3): 1314-1333.
    [6] Nelson A, Dubé K. Channel response to an extreme flood and sediment pulse in a mixed bedrock and gravel-bed river[J]. Earth Surface Processes and Landforms,2016,41(2): 178-195.
    [7] Yalin M S. Mechanics of Sediment Transport [M]. Oxford: Pergamon Press, 1972: 100-114.
    [8] 白玉川, 罗纪生. 明渠层流失稳与沙纹成因机理研究[J]. 应用数学和力学, 2002,23(3): 254-268.(BAI Yu-chuan, LUO Ji-sheng. The loss of stability of laminar flow in open channel and the mechanism of sand ripple formation[J]. Applied Mathematics and Mechanics,2002, 23(3): 254-268.(in Chinese))
    [9] XU Hai-jue, BAI Yu-chuan. The nonlinear theory for sediment ripple dynamic process of straight river[J]. Science China: Technological Sciences,2012,55(3): 753-771.
    [10] XU Hai-jue, BAI Yu-chuan. Theoretical analyses on hydrodynamic instability in narrow deep river with variable curvature[J]. Applied Mathematics and Mechanics (English Edition),2015,36(9): 1147-1168.
    [11] 许栋, 白玉川, 谭艳. 正弦派生曲线弯道中水沙运动特性动床试验[J]. 天津大学学报(自然科学版), 2010,43(9):762-770.(XU Dong, BAI Yu-chuan, TAN Yan. Experiment on characteristics of flow and sediment movement in sine-generated meandering channels with movable bed[J].Journal of Tianjin University (Natural Science Edition),2010,43(9):762-770. (in Chinese))
    [12] 白玉川, 冀自清, 刘小谢, 徐海珏, 杨树青, 杨燕华. 常曲率窄深型弯曲河流水流动力稳定特征理论研究[J]. 中国科学: 物理学 力学 天文学, 2012,42(2): 162-171.(BAI Yu-chuan, JI Zi-qing, LIU Xiao-xie, XU Hai-jue, YANG Shu-qing, YANG Yan-hua. Instability of laminar flow in narrow and deep meander channel with constant curvature[J]. Scientic Sinica: Physica, Mechanica and Astronomica, 2012,42(2): 162-171.(in Chinese))
    [13] BAI Yu-chuan, JI Zi-qing, XU Hai-jue. Stability and self-adaption character of turbulence coherent structure in narrow-deep river bend[J]. Science China: Technological Sciences,2012,55(11): 2990-2999.
    [14] 钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 2003: 28.(QIAN Ning, WAN Zhao-hui. Mechanics of Sediment Transport [M]. Beijing: Science Press, 2003: 28. (in Chinese))
    [15] 汪维刚, 许永红, 石兰芳, 莫嘉琪. 一类双参数非线性高阶反应扩散方程的摄动解法[J]. 应用数学和力学, 2014,35(12): 1383-1391.(WANG Wei-gang, XU Yong-hong, SHI Lan-fang, MO Jia-qi. Perturbation method for a class of high-order nonlinear reaction diffusion equations with double parameters[J]. Applied Mathematics and Mechanics,2014,35(12): 1383-1391.(in Chinese))
    [16] 冯依虎, 石兰芳, 汪维刚, 莫嘉琪. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015,36(3): 315-324.( FENG Yi-hu, SHI Lan-fang, WANG Wei-gang, MO Jia-qi. Travelling wave solution to a class of generalized nonlinear strong-damp disturbed evolution equations[J]. Applied Mathematics and Mechanics,2015,36(3): 315-324.(in Chinese))
    [17] Saghafian M, Saberian I, Rajabi R, Shirani E. A numerical study on slip flow heat transfer in micro-poiseuille flow using perturbation method[J]. Journal of Applied Fluid Mechanics, 2015,8(1): 123-132.
    [18] ZHOU Heng, LU Chang-gen, LUO Ji-sheng. Modeling of individual coherent structures in wall region of a turbulent boundary layer[J]. Science in China (Series A),1999,42(6): 366-372.
    [19] ZHANG Dong-ming, LUO Ji-sheng, ZHOU Heng. Dynamic model of coherent structure in the wall region of a turbulent boundary layer[J]. Science in China (Series G), 2003,46(3): 291-299.
    [20] BAI Yu-chuan, YANG Yan-hua. The dynamic stability of the flow in a meander channel[J]. Science China: Technological Sciences,2011,54(4): 931-940.
  • 加载中
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  100
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-01
  • 修回日期:  2016-09-13
  • 刊出日期:  2016-10-15

目录

    /

    返回文章
    返回