留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动载荷识别的非迭代法研究

余波 吴月 聂川宝 高强

余波, 吴月, 聂川宝, 高强. 动载荷识别的非迭代法研究[J]. 应用数学和力学, 2019, 40(5): 473-489. doi: 10.21656/1000-0887.390211
引用本文: 余波, 吴月, 聂川宝, 高强. 动载荷识别的非迭代法研究[J]. 应用数学和力学, 2019, 40(5): 473-489. doi: 10.21656/1000-0887.390211
YU Bo, WU Yue, NIE Chuanbao, GAO Qiang. A Non-Iterative Method for Dynamic Load Identification[J]. Applied Mathematics and Mechanics, 2019, 40(5): 473-489. doi: 10.21656/1000-0887.390211
Citation: YU Bo, WU Yue, NIE Chuanbao, GAO Qiang. A Non-Iterative Method for Dynamic Load Identification[J]. Applied Mathematics and Mechanics, 2019, 40(5): 473-489. doi: 10.21656/1000-0887.390211

动载荷识别的非迭代法研究

doi: 10.21656/1000-0887.390211
基金项目: 国家自然科学基金(11872166;11502063);安徽省自然科学基金(1608085QA07)
详细信息
    作者简介:

    余波(1984—),男,副教授(通讯作者. E-mail: yubochina@hfut.edu.cn).

  • 中图分类号: O342;O302

A Non-Iterative Method for Dynamic Load Identification

Funds: The National Natural Science Foundation of China(11872166;11502063)
  • 摘要: 为了快速准确地识别结构在复杂环境下的承载状态,基于有限元法和Newmark-β法提出了一种非迭代反演方法,并用于识别结构上施加的动载荷.通过探寻测量信息与待演参量之间的关系,建立误差函数,根据最小二乘法实现动载荷的直接识别无需迭代,其中对待反演的分布载荷实施基函数展开,以提高算法的抗不适定性.同时奇异值分解法被用来求解病态方程组.数值算例分别讨论了测量噪声、测点数量、基函数展开、测点位置和不同时间步长对反演结果的影响,结果显示该方法在识别动载荷时具有较高的精度和效率.
  • [1] 韩旭, 刘杰, 李伟杰, 等. 时域内多源动态载荷的一种计算反求技术[J]. 力学学报, 2009,41(4): 595-602.(HAN Xu, LIU Jie, LI Weijie, et al. A computational inverse technique for reconstruction of multisource loads in time domain[J]. Chinese Journal of Theoretical and Applied Mechanics,2009,41(4): 595-602.(in Chinese))
    [2] 毛玉明, 林剑锋, 刘靖华, 等. 动载荷反演分析技术研究综述[J]. 动力学与控制学报, 2014,12(2): 97-104.(MAO Mingyu, LIN Jianfeng, LIU Jinghua, et al. Recent advances of dynamic force estimation techniques[J]. Journal of Dynamics and Control,2014,12(2): 97-104.(in Chinese))
    [3] 杨志春, 贾友. 动载荷的识别方法[J]. 力学进展, 2015,45: 29-52.(YANG Zhichun, JIA You. The identification of dynamic loads[J]. Advances in Mechanics,2015,45: 29-52.(in Chinese))
    [4] 郑敏, 任芳, 杨兆建, 等. 自适应BP神经网络的转子系统载荷识别的研究[J]. 机械设计与制造, 2016,6: 85-88, 92.(ZHENG Min, REN Fang, YANG Zhaojian, et al. Study on the load identification of the rotor system with self-adaptive BP neural networks[J]. Machinery Design & Manufacture,2016,6: 85-88, 92.(in Chinese))
    [5] 杨帆, 张方, 姜金辉. 正交小波级数拟合法的薄板结构分布动载荷识别技术[J]. 北京理工大学学报, 2014,34(6): 561-564.(YANG Fan, ZHANG Fang, JIANG Jinhui. Orthogonal wavelet series fitting in identification of distributed load for thin plate model[J]. Transactions of Beijing Institute of Technology,2014,34(6): 561-564.(in Chinese))
    [6] CUI M, MEI J, ZHANG B W, et al. Inverse identification of boundary conditions in a scramjet combustor with a regenerative cooling system[J]. Applied Thermal Engineering,2018,134: 555-563.
    [7] WANG G J, WAN S B, CHEN H, et al. A double decentralized fuzzy inference method for estimating the time and space-dependent thermal boundary condition[J]. International Journal of Heat & Mass Transfer,2017,109: 302-311.
    [8] 周焕林, 严俊, 余波, 等. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018,39(2): 160-169.(ZHOU Huanlin, YAN Jun, YU Bo, et al. Identification of thermal diffusion coefficients for transient heat conduction problems with heat sources[J]. Applied Mathematics and Mechanics,2018,39(2): 160-169.(in Chinese))
    [9] 王一博, 杨海天, 邬瑞锋. 基于时域精细积分算法的瞬态传热多宗量反演[J]. 应用数学和力学, 2005,26(5): 512-518.(WANG Yibo, YANG Haitian, WU Ruifeng. Precise integral algorithm based solution for transient inverse heat conduction problems with multi-variables[J]. Applied Mathematics and Mechanics,2005,26(5): 512-518.(in Chinese))
    [10] WANG G J, WAN S B, CHEN H, et al. A double decentralized fuzzy inference method for estimating the time and space-dependent thermal boundary condition[J]. International Journal of Heat & Mass Transfer,2017,109: 302-311.
    [11] XU B, HE J, ROGER R, et al. Structural parameters and dynamic loading identification from incomplete measurements: approach and validation[J]. Mechanical Systems and Signal Processing,2012,28: 244-257.
    [12] 徐训, 欧进萍. 基于独立分量分析的多源动态载荷识别方法[J]. 力学学报, 2012,44(1): 158-166.(XU Xun, OU Jinping. An identification method of multi-soure dynamic loads based on independent component analysis[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(1): 158-166.(in Chinese))
    [13] 王静, 陈海波, 王靖. 基于精细积分的冲击载荷时域识别方法研究[J]. 振动与冲击, 2013,32(20): 81-85.(WANG Jing, CHEN Haibo, WANG Jing. A study of impulsive load identification in time domain based on precise time-integration method[J]. Journal of Vibration and Shock,2013,32(20): 81-85.(in Chinese))
    [14] LIU J, SUN X S, HAN X, et al. A novel computational inverse technique for load identification using the shape function method of moving least square fitting[J]. Computers and Structures,2014,144: 127-137.
    [15] 彭凡, 马庆镇, 肖健, 等. 自由运行结构动态载荷识别的格林函数法[J]. 动力学与控制学报, 2016,14(1): 75-79.(PENG Fan, MA Qingzhen, XIAO Jian, et al. Green kernel function approach of load identification for free structures with overall translation[J]. Journal of Dynamics and Control,2016,14(1): 75-79.(in Chinese))
    [16] YU B, YAO W A, GAO Q, et al. A novel non-iterative inverse method for estimating boundary condition of the furnace inner wall[J]. International Communications in Heat & Mass Transfer,2017,87: 91-97.
    [17] YU B, XU C, YAO W A, et al. Estimation of boundary condition on the furnace inner wall based on precise integration BEM without iteration[J]. International Journal of Heat & Mass Transfer, 2018,122: 823-845.
    [18] SUN X, LIU J, HAN X, et al. A new improved regularization method for dynamic load identification[J]. Inverse Problems in Science & Engineering,2014,22(7): 1062-1076.
    [19] ZHOU H L, LI Y S, YU B, et al. Shape identification for inverse geometry heat conduction problems by FEM without iteration[J]. Numerical Heat Transfer Applications,2017,72(8): 1-14.
    [20] 迟彬, 叶庆凯. 用奇异值分解方法计算具有重特征值矩阵的特征矢量[J]. 应用数学和力学, 2004,25(3): 233-238.(CHI Bin, YE Qingkai. Computing the eigenvectors of a matrix with multiplex eigenvalues by SVD method[J]. Applied Mathematics and Mechanics,2004,25(3): 233-238.(in Chinese))
    [21] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004.(ZHANG Xiong, LIU Yan. Meshless Method [M]. Beijing: Tsinghua University Press, 2004.(in Chinese))
    [22] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2015.(WANG Xucheng. Finite Element Method [M]. Beijing: Tsinghua University Press, 2015.(in Chinese))
    [23] 张雄, 王天舒, 刘岩. 计算动力学[M]. 北京: 清华大学出版社, 2015.(ZHANG Xiong, WANG Tianshu, LIU Yan. Computational Dynamics [M]. Beijing: Tsinghua University Press, 2015.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1315
  • HTML全文浏览量:  249
  • PDF下载量:  614
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-01
  • 修回日期:  2018-09-11
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回