留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的非协调广义混合单元及性能分析

赵直钦 卿光辉

赵直钦, 卿光辉. 改进的非协调广义混合单元及性能分析[J]. 应用数学和力学, 2019, 40(5): 518-526. doi: 10.21656/1000-0887.390146
引用本文: 赵直钦, 卿光辉. 改进的非协调广义混合单元及性能分析[J]. 应用数学和力学, 2019, 40(5): 518-526. doi: 10.21656/1000-0887.390146
ZHAO Zhiqin, QING Guanghui. Improved Noncompatible Generalized Mixed Elements and Performance Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(5): 518-526. doi: 10.21656/1000-0887.390146
Citation: ZHAO Zhiqin, QING Guanghui. Improved Noncompatible Generalized Mixed Elements and Performance Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(5): 518-526. doi: 10.21656/1000-0887.390146

改进的非协调广义混合单元及性能分析

doi: 10.21656/1000-0887.390146
基金项目: 国家自然科学基金(11502286)
详细信息
    作者简介:

    赵直钦(1994—),男,硕士生(通讯作者. E-mail: zhiqin1994@163.com);卿光辉(1968—),男,教授,博士,硕士生导师(E-mail: qingluke@126.com).

  • 中图分类号: O342;O343

Improved Noncompatible Generalized Mixed Elements and Performance Analysis

Funds: The National Natural Science Foundation of China(11502286)
  • 摘要: 非协调广义混合单元最突出的特点是避免了传统混合单元中系数矩阵主对角线上存在零元素的问题,因此位移和应力结果的收敛是稳定的.以最小势能原理和HR变分原理为基础,联合增强假设应变理论建立了新的8结点非协调广义混合单元.一方面,该单元保持了已有非协调广义混合单元的全部优点;另一方面,该单元简化了积分计算.数值实例表明,改进的非协调广义混合单元的数值结果精度高,计算速度快并且对单元的几何扭曲敏感度低.
  • [1] LEE S W, RHIU J J. A new efficient approach to the formulation of mixed finite element models for structural analysis[J]. International Journal for Numerical Methods in Engineering,1986,23(9): 1629-1641.
    [2] DVORKIN E N, BATHE K J. A continuum mechanics based four-node shell element for general non-linear analysis[J]. Engineering Computations,1984,1(1): 77-88.
    [3] SIMO J C, RIFAI M S. A class of mixed assumed strain methods and the method of incompatible modes[J]. International Journal for Numerical Methods in Engineering,1990,29(8): 1595-1638.
    [4] TAYLOR R L, BERESFORD P J, WILSON E L. A non-conforming element for stress analysis[J]. International Journal for Numerical Methods in Engineering,1976,10(6): 1211-1219.
    [5] BREZZI F, FORTIN M. Mixed and Hybrid Finite Element Methods[M]. New York: Springer-Verlag, 2011.
    [6] QIU W, DEMKOWICZ L. Variable order mixed h -finite element method for linear elasticity with weakly imposed symmetry II: affine and curvilinear elements in 2D[J]. Mathematics,2010. DOI: arXiv:1011.0485.
    [7] GOPALAKRISHNAN J, GUZMN J. Symmetric nonconforming mixed finite elements for linear elasticity[J]. SIAM Journal on Numerical Analysis,2011,49(4): 1504-1520.
    [8] QING G, MAO J, LIU Y. Generalized mixed finite element method for 3D elasticity problems[J]. Acta Mechanica Sinica,2018,34(2): 371-380.
    [9] ANDELFINGER U, RAMM E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements[J]. International Journal for Numerical Methods in Engineering,1993,36(8): 1311-1337.
    [10] 田宗漱, 卞学鐄. 多变量变分原理与多变量有限元方法[M]. 北京: 科学出版社, 2011.(TIAN Zongshu, PIAN T H H. Variational Principle With Multi-Variables and Finite Element With Multi-Variables [M]. Beijing: Science Press, 2011.(in Chinese))
    [11] 〖JP2〗REISSNER E. On a variational theorem in elasticity[J]. Studies in Applied Mathematics,1950,29(1/4): 90-95.
    [12] LIOU W J, SUN C T. A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates[J]. Computers & Structures,1987,25(2): 241-249.
    [13] 陈万吉. 一个高精度八结点六面体单元[J]. 力学学报, 1982(3): 262-271.(CHEN Wanji. A high-precision eight-node hexahedron element[J]. Chinese Journal of Theoretical and Applied Mechanics,1982(3): 262-271.(in Chinese))
    [14] CHEUNG Y K, WANJI C. Isoparametric hybrid hexahedral elements for three dimensional stress analysis[J]. International Journal for Numerical Methods in Engineering,1988,26(3): 677-693.
    [15] PAGANO N J. Exact solutions for rectangular bidirectional composites and sandwich plates[J]. Journal of Composite Materials,1970,4(1): 20-34.
    [16] VEL S S, BATRA R C. Analytical solution for rectangular thick laminated plates subjected to arbitrary boundary conditions[J]. AIAA Journal,2012,37(11): 1464-1473.
  • 加载中
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  144
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-11-09
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回