留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内机械激波——海洋激流的一种解释

吴锋 钟万勰

吴锋, 钟万勰. 内机械激波——海洋激流的一种解释[J]. 应用数学和力学, 2019, 40(8): 823-839. doi: 10.21656/1000-0887.400138
引用本文: 吴锋, 钟万勰. 内机械激波——海洋激流的一种解释[J]. 应用数学和力学, 2019, 40(8): 823-839. doi: 10.21656/1000-0887.400138
WU Feng, ZHONG Wanxie. Internal Mechanical Shock Wave: an Explanation of the Ocean Shock Current[J]. Applied Mathematics and Mechanics, 2019, 40(8): 823-839. doi: 10.21656/1000-0887.400138
Citation: WU Feng, ZHONG Wanxie. Internal Mechanical Shock Wave: an Explanation of the Ocean Shock Current[J]. Applied Mathematics and Mechanics, 2019, 40(8): 823-839. doi: 10.21656/1000-0887.400138

内机械激波——海洋激流的一种解释

doi: 10.21656/1000-0887.400138
基金项目: 国家自然科学基金(51609034;11472076);中央高校基本科研业务费(DUT17RC(3)069)
详细信息
    作者简介:

    吴锋(1985—),男,副教授(E-mail: vonwu@dlut.edu.cn);钟万勰(1934—),男,教授,中科院院士(通讯作者. E-mail: zwoffice@dlut.edu.cn).

  • 中图分类号: O353.2

Internal Mechanical Shock Wave: an Explanation of the Ocean Shock Current

Funds: The National Natural Science Foundation of China(51609034;11472076)
  • 摘要: 采用Lagrange坐标和Hamilton原理,推导了二维两层浅水系统的位移法内波方程,并在此基础上研究了二维内机械激波.通过具体的数值算例分析发现内机械激波具有流速大、持续时间短、空间范围狭小、水面存在突变的特点,指出海洋激流就是内机械激波.内机械激波同样也为海洋断崖提供了一种解释.
  • [1] 修日晨, 张自历, 刘爱菊. 海洋激流的观测实验及分析讨论[J]. 海洋学报, 2004,26(2): 118-124.(XIU Richeng, ZHANG Zili, LIU Aiju. Observational experiment,analysis and discussion of sea storm current[J]. Acta Oceanologica Sinica,2004,26(2): 118-124.(in Chinese))
    [2] 修日晨, 顾玉荷, 刘爱菊, 等. 海洋激流的若干观测结果[J]. 海洋学报, 2000,22(4): 118-124.(XIU Richeng, GU Yuhe, LIU Aiju, et al. Some observational results of sea storm current[J]. Acta Oceanologica Sinica,2000,22(4): 118-124.(in Chinese))
    [3] 刘爱菊, 修日晨, 张自历, 等. 江苏近海的激流[J]. 海洋学报, 2002,24(6): 120-126.(LIU Aiju, XIU Richeng, ZHANG Zili, et al. Storm current in the coastal waters of Jiangsu province, China[J]. Acta Oceanologica Sinica,2002,24(6): 120-126.(in Chinese))
    [4] 彭畅, 陈可锋, 徐志峰. 南黄海辐射沙脊北部水域“激流”特征及成因机制研究[J]. 科学技术与工程, 2014,〖STHZ〗 14(5): 24-31.(PENG Chang, CHEN Kefeng, XU Zhifeng. Analyses on characteristics and genesis of storm current in north radial sand ridges area, South Yellow Sea[J]. Science Technology and Engineering,2014,14(5): 24-31.(in Chinese))
    [5] 尹逊福, 刘爱菊, 张海波. 南海东部区域的海流状况Ⅱ: 海洋激流现象[J]. 黄渤海海洋, 2002,20(2): 7-11.(YIN Xunfu, LIU Aiju, ZHANG Haibo. Current conditions in the eastern South China Sea Ⅱ: ocean storm current phenomenon[J].Journal of Oceanography of Huanghai & Bohai Seas,2002,20(2): 7-11.(in Chinese))
    [6] 方文东, 陈荣裕, 毛庆文. 南海北部大陆坡区的突发性强流[J]. 热带海洋, 2000,19(1): 70-75.(FANG Wendong, CHEN Rongyu, MAO Qingwen. Abrupt strong currents over continental slope of northern South China Sea[J]. Tropic Oceanology,2000,19(1): 70-75.(in Chinese))
    [7] 钟万勰, 姚征. 位移法浅水孤立波[J]. 大连理工大学学报, 2006,〖STHZ〗 46(1): 151-156.(ZHONG Wanxie, YAO Zheng. Shallow water solitary waves based on displacement method[J]. Journal of Dalian University of Technology,2006,46(1): 151-156.(in Chinese))
    [8] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wanxie. Symplectic Method in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
    [9] 钟万勰, 吴锋. 力-功-能-辛-离散-祖冲之方法论[M]. 大连: 大连理工大学出版社, 2016.(ZHONG Wanxie, WU Feng. Force-Work-Energy-Symplecticity-Discretization-ZU Chongzhi’s Methodology [M]. Dalian: Dalian University of Technology Press, 2016.(in Chinese))
    [10] 钟万勰, 吴锋, 孙雁. 浅水机械激波[J]. 应用数学和力学, 2017,38(8): 845-852.(ZHONG Wanxie, WU Feng, SUN Yan. Shallow water mechanical shock wave[J]. Applied Mathematics and Mechanics,2017,38(8): 845-852.(in Chinese))
    [11] 吴锋. 基于位移的水波数值模拟: 辛方法[M]. 大连: 大连理工大学, 2017.(WU Feng. Numerical Modeling of Water Waves Based on Displacement: Symplectic Method [M]. Dalian: Dalian University of Technology Press, 2017.(in Chinese))
    [12] 姚征, 钟万勰. 位移法浅水波方程的解及其特性[J]. 计算机辅助工程, 2016,25(2): 21-25.(YAO Zheng, ZHONG Wanxie. Solutions and characteristics of shallow water equation based on displacement method[J]. Computer Aided Engineering,2016,25(2): 21-25.(in Chinese))
    [13] 吴锋, 钟万勰. 浅水问题的约束Hamilton变分原理及祖冲之类保辛算法[J]. 应用数学和力学, 2016,37(1): 3-15.(WU Feng, ZHONG Wanxie. The constrained Hamilton variational principle for shallow water problems and the Zu-type symplectic algorithm[J]. Applied Mathematics and Mechanics,2016,37(1): 3-15. (in Chinese))
    [14] KINNMARK I. The Shallow Water Wave Equations: Formulation, Analysis and Application [M]. Berlin: Springer, 1986.
    [15] WU F, ZHONG W X. On displacement shallow water wave equation and symplectic solution[J]. Computer Methods in Applied Mechanics and Engineering,2017,318: 431-455.
    [16] STOKER J J. Water Waves: the Mathematical Theory With Applications [M]. New York: Interscience Publishers LTD, 1957.
    [17] COURANT R, FRIEDRICHS K O. Supersonic Flow and Shock Waves [M]. New York: Wiely, 1948.
  • 加载中
计量
  • 文章访问数:  1633
  • HTML全文浏览量:  241
  • PDF下载量:  641
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回