## 留言板

 引用本文: 廖世俊. 广义泰勒定理:“同伦分析方法”之有效性的一个数理逻辑证明[J]. 应用数学和力学, 2003, 24(1): 47-54.
LIAO Shi-jun. On a Generalized Taylor Theorem:a Rational Proof of the Validity of the So-Called Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2003, 24(1): 47-54.
 Citation: LIAO Shi-jun. On a Generalized Taylor Theorem:a Rational Proof of the Validity of the So-Called Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2003, 24(1): 47-54.

## 广义泰勒定理:“同伦分析方法”之有效性的一个数理逻辑证明

###### 作者简介:廖世俊(1963- ),男,教育部"长江奖励计划"特聘教授,博士(E-mail:sjliao@sjtu.edu.cn)
• 中图分类号: O173.1,O175.14,O189.23

## On a Generalized Taylor Theorem:a Rational Proof of the Validity of the So-Called Homotopy Analysis Method

• 摘要: 推导了复变函数一个广义意义上的泰勒级数表达式,证明了有关的收敛性定理,大大增大摄动级数解的收敛区域.定理的证明亦为一种新的、求解非线性问题的解析方法(即“同伦分析方法”)的有效性奠定了一个坚实的数理逻辑基础.
•  [1] Newton I.On the binomial theorem for fractional and negative exponents[A].In:G D Walcott Ed.A Source Book in Mathematics[C].New York:McGraw Hill Book Company,1929,224-228. [2] Dienes P.The Taylor Series[M].Oxford:Dover,1931. [3] 廖世俊.The proposed homotopy analysis method for nonlinear problems[D].博士论文.上海:上海交通大学,1992. [4] LIAO Shi-jun,An approximate solution technique not depending on small parameters:a special example[J].Internat J Non-Linear Mech,1995,30:371-380. [5] LIAO Shi-jun.A kind of approximate solution technique which does not depend upon small parameters (Part 2):an application in fluid mechanics[J].Internat J Non-Linear Mech,1997,32:815-822. [6] LIAO Shi-jun.A simple way to enlarge the convergence region of perturbation approximations[J].Nonlinear Dynamics,1999,19:93-110. [7] LIAO Shi-jun.An explicit,totally analytic approximation of Blasius' viscous flow problems[J].Internat J Non-Linear Mech,1999,34:759-778. [8] LIAO Shi-jun.A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate[J].J Fluid Mech,1999,385:101-128. [9] LIAO Shi-jun,Campo A.Analytic solutions of the temperature distribution in Blasius viscous flow problems[J].J Fluid Mech,2002,453:411-425. [10] LIAO Shi-jun,An analytic approximation of the drag coefficient for the viscous flow past a sphere[J].Internat J Non-Linear Mech,2002,37:1-18. [11] Nayfeh A H.Perturbation Methods[M].New York:John Wiley & Sons,Inc,2000. [12] Lyapunov A M.General Problem on Stability of Motion[M].London:Taylor & Francis,1992.(English version). [13] Karmishin A V,Zhukov A I,Kolosov V G.Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M].Moscow:Mashinostroyenie,1990. [14] Adomian G.Nonlinear stochastic differential equations[J].J Math Anal Appl,1976,55:441-452. [15] Adomian,G.Solving Frontier Problems of Physics:the Decomposition Method[M].Boston:Kluwer Academic Publishers,1994. [16] Wazwaz A M.The decomposition method applied to systems of partial differential equations and to the reactioncdiffusion Brusselator model[J].Applied Mathematics and Computation,2000,110:251-264. [17] Shawagfeh N T.Analytical approximate solutions for nonlinear fractional differential equations[J].Applied Mathematics and Computation,2002,131:517-529.

##### 计量
• 文章访问数:  1927
• HTML全文浏览量:  49
• PDF下载量:  1009
• 被引次数: 0
##### 出版历程
• 收稿日期:  2002-01-28
• 修回日期:  2002-10-15
• 刊出日期:  2003-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈