## 留言板

 引用本文: 朱菊芬, 周承芳, 吕和祥. 一般杆系结构的非线性数值分析[J]. 应用数学和力学, 1987, 8(12): 1099-1109.
Zhu Ju-fen, Zhou Cheng-fang, Lü He-xiang. The Nonlinear Numerical Analysis Method for Frames[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1099-1109.
 Citation: Zhu Ju-fen, Zhou Cheng-fang, Lü He-xiang. The Nonlinear Numerical Analysis Method for Frames[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1099-1109.

## The Nonlinear Numerical Analysis Method for Frames

• 摘要: 本文在total-Lagrange坐标系下,对Kirchhoff梁给出了考虑几何非线性的两种梁单元刚度的显式表达式.一种是一般的非线性梁元,它既考虑了应变增量和位移增量间的二次项,又计及了刚体位移的影响,另一种是简化的非线性梁元,它只在线性梁的平衡方程中直接加入了轴力对弯曲的影响.非线性方程采用混合法求解,文中通过一些算例的数值计算,对两种单元作了比较详细的分析和评估.
•  [1] Kamat,M.P.and L.T.Watson,A quasi-Newton versus a homotopy method for nonlinear structure analysis,Comput.and Struct.,4 (1983),579-589. [2] Suran,Karan S.,Geometrically nonlinear formulation for two dimensional curved beam elements,Comput.and Struct.,4 (1983),105-114. [3] Schrefler,B.A.and S.Odorizz,A total Lagrangian geometrically nonlinear analysis of combined beam and cable structures,Comput.and Struct.,1 (1983),115-127. [4] Fum,Fumio.A simple mixed formulation for elastic problems,Comput.and Struct.,1 (1983),79-88. [5] Stanley,P.,Nonlinear Problems in Stress Analysis (1978),373-396,. [6] 谢贻权、何福保,《弹性和塑性力学中的有限元方法》,机械工业出版社(1981). [7] Zienkiewicz,O.C.,The Finite Element Method 3rd Edn.,McGraw-Hill London (1977). [8] Majid,K.I.,Nonlinear Structures,London-Butterworths (1972). [9] Frish-Fay,R.,Flexible Bars,London-Butterworths (1962).

##### 计量
• 文章访问数:  1696
• HTML全文浏览量:  58
• PDF下载量:  662
• 被引次数: 0
##### 出版历程
• 收稿日期:  1986-10-15
• 刊出日期:  1987-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈