## 留言板

 引用本文: 陈光祖. 应用最小势能原理计算应力强度因子[J]. 应用数学和力学, 1987, 8(12): 1121-1129.
Chen Guang-zu. Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1121-1129.
 Citation: Chen Guang-zu. Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1121-1129.

## Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy

• 摘要: 本文用Williams给出的包含待定系数An(n=1,2,…)的应力场和位移场无穷级数解表示裂纹体系统的总势能∏,由最小势能原理,得到含未知数An的线性方程组.解此方程组,取主项A1,即得到相应的应力强度因子K1=√2πaA1.文中对单边直裂纹拉伸板进行了具体计算.在板的裂纹长度与板宽比a/W=0.5,板半长与板宽比g/W=2.0～2.5的情况下,仅采用了20～30个系数,结果误差小于5%.
•  [1] 钱伟长,《弹性力学》,科学出版社(1956) [2] Williams,M.L.,On the stress distribution at the base of a stationary crack,J.Appl.Mech.,24(1957). [3] Cross,B.and J.E.Srawley,Stress-intensity factors for a single-edge-notch tension specimen by boundary collocation of a stress function,NASA,TN,D-2395(1964). [4] Keer,L.M.and J.M.Freedman,Tensile strip with edge crack:Int.J.Engng.Sci.,11(1973). [5] 陈光祖,顾求林,确定应力强度因子的势能法,全国第三届断裂会议,南京(1981).
##### 计量
• 文章访问数:  2022
• HTML全文浏览量:  64
• PDF下载量:  440
• 被引次数: 0
##### 出版历程
• 收稿日期:  1986-07-10
• 刊出日期:  1987-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈