留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有标准发生率和信息干预的随机时滞SIRS传染病模型的动力学行为

赵英英 胡华

赵英英, 胡华. 带有标准发生率和信息干预的随机时滞SIRS传染病模型的动力学行为[J]. 应用数学和力学, 2019, 40(12): 1373-1388. doi: 10.21656/1000-0887.400031
引用本文: 赵英英, 胡华. 带有标准发生率和信息干预的随机时滞SIRS传染病模型的动力学行为[J]. 应用数学和力学, 2019, 40(12): 1373-1388. doi: 10.21656/1000-0887.400031
ZHAO Yingying, HU Hua. Dynamic Behaviors of Stochastically Delayed SIRS Epidemic Models With Standard Incidence Rates Under Information Intervention[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1373-1388. doi: 10.21656/1000-0887.400031
Citation: ZHAO Yingying, HU Hua. Dynamic Behaviors of Stochastically Delayed SIRS Epidemic Models With Standard Incidence Rates Under Information Intervention[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1373-1388. doi: 10.21656/1000-0887.400031

带有标准发生率和信息干预的随机时滞SIRS传染病模型的动力学行为

doi: 10.21656/1000-0887.400031
基金项目: 国家自然科学基金(11361044);宁夏自然科学基金(2019AAC03038);宁夏高等学校科学研究项目(NGY2018049)
详细信息
    作者简介:

    赵英英(1993—),女,硕士(E-mail: 18395001808@163.com);胡华(1962—),男,教授,硕士生导师(通讯作者. E-mail: huhuanum@163.com).

  • 中图分类号: O211.63|O175.13

Dynamic Behaviors of Stochastically Delayed SIRS Epidemic Models With Standard Incidence Rates Under Information Intervention

Funds: The National Natural Science Foundation of China(11361044)
  • 摘要: 考虑了一类具有标准发生率和信息干预的随机时滞SIRS传染病模型.定义了一个停时,通过构造适当的Lyapunov函数证明了停时为无穷大,从而证明了该模型正解的全局存在性和唯一性.通过构造适当的 Lyapunov函数,研究了该模型的解在确定性模型无病平衡点和地方病平衡点附近的渐近行为,得到了在一定条件下随机系统的解分别围绕两个平衡点做随机振动.
  • [1] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics: Ⅰ[J]. Bulletin of Mathematical Biology,1991,53(1): 33-55.
    [2] MA Z E, ZHOU Y C, WU J H. Modeling and Dynamics of Infectious Diseases [M]. Beijing: Higher Education Press, 2009.
    [3] LIU Q, CHEN Q. Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence[J]. Physica A: Statistical Mechanics and Its Applications,2015,428(1):140-153.
    [4] LAHROUZ A, OMARI L, KIOUACH D, et al. Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination[J]. Applied Mathematics and Computation,2012,218(1): 6519-6525.
    [5] UN I W, JANN T W, SHAN C C, et al. Impacts of a mass vaccination campaign against pandemic H1N1 2009 influenza in Taiwan: a time-series regression analysis[J]. International Journal of Infectious Diseases,2014,23: 82-89.
    [6] KUMAR A, SRIVASTAVA P K, TAKEUCHI Y. Modeling the role of information and limited optimal treatment on disease prevalence[J]. Journal of Theoretical Biology,2017,414(1): 103-119.
    [7] PAINTER J E, DICLEMENTE R J, VON FRICKEN M E. Interest in an Ebola vaccine among a US national sample during the height of the 2014—2016 Ebola outbreak in West Africa[J]. Vaccine,2017,35(4): 508-512.
    [8] SHIWANI H A, PHARITHI R B, KHAN B, et al. An update on the 2014 Ebola outbreak in West Africa[J]. Asian Pacific Journal of Tropical Medicine,2017,10(1): 6-10.
    [9] ZHANG T L, LIU J L, TENG Z D. Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure[J]. Nonlinear Analysis: Real World Applications,2010,11(1): 293-306.
    [10] ZHANG F P, LI Z Z, ZHANG F. Global stability of an SIR epidemic model with constant infectious period[J]. Applied Mathematics and Computation,2008,199(1): 285-291.
    [11] QI L X, CUI J A. The stability of an SEIRS model with nonlinear incidence, vertical transmission and time delay[J]. Applied Mathematics and Computation,2013,221(1): 360-366.
    [12] COOKE K L. Stability analysis for a vector disease model[J]. Rocky Mountain Journal of Mathematics,1979,9(1). DOI: 10. 1216/RMJ-1979-9-1-31.
    [13] HEFFERNAN J M, SMITH R J, WAHL L M. Perspectives on the basic reproductive ratio[J]. Journal of the Royal Society Interface,2005,2(4): 281-293.
    [14] CAI Y, KANG Y, BANERJEE M, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies[J]. Journal of Differential Equations,2015,259(12): 7463-7502.
    [15] MAO X R. Stochastic Differential Equations and Applications [M]. Chichester: Horwood Publishing Limited, 1997.
    [16] IKEDA N, WATANABE S. Stochastic Differential Equations and Diffusion Processes [M]. New York: North-Holland, 1981.
  • 加载中
计量
  • 文章访问数:  1310
  • HTML全文浏览量:  223
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-14
  • 修回日期:  2019-05-16
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回