留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由支配集下近似平衡约束向量优化问题的稳定性研究

曾悦 彭再云 梁仁莉 邵重阳

曾悦, 彭再云, 梁仁莉, 邵重阳. 自由支配集下近似平衡约束向量优化问题的稳定性研究[J]. 应用数学和力学, 2021, 42(9): 958-967. doi: 10.21656/1000-0887.410244
引用本文: 曾悦, 彭再云, 梁仁莉, 邵重阳. 自由支配集下近似平衡约束向量优化问题的稳定性研究[J]. 应用数学和力学, 2021, 42(9): 958-967. doi: 10.21656/1000-0887.410244
ZENG Yue, PENG Zaiyun, LIANG Renli, SHAO Chongyang. Stability of Vector Optimization Problems Under Approximate Equilibrium Constraints via Free-Disposal Sets[J]. Applied Mathematics and Mechanics, 2021, 42(9): 958-967. doi: 10.21656/1000-0887.410244
Citation: ZENG Yue, PENG Zaiyun, LIANG Renli, SHAO Chongyang. Stability of Vector Optimization Problems Under Approximate Equilibrium Constraints via Free-Disposal Sets[J]. Applied Mathematics and Mechanics, 2021, 42(9): 958-967. doi: 10.21656/1000-0887.410244

自由支配集下近似平衡约束向量优化问题的稳定性研究

doi: 10.21656/1000-0887.410244
基金项目: 

国家自然科学基金(11301571);重庆市基础与前沿研究项目(cstc2018jcyjAX0337);重庆市巴渝学者计划;重庆市研究生导师团队建设项目(JDDSTD201802);重庆市研究生教育创新基金(CYS20290);重庆市高校创新研究群体项目(CXQT21021)

详细信息
    作者简介:

    曾悦(1997—),女,硕士生(E-mail: zengyueylmn@163.com);彭再云(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: pengzaiyun@126.com).

    通讯作者:

    彭再云(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: pengzaiyun@126.com).

  • 中图分类号: O175.29

Stability of Vector Optimization Problems Under Approximate Equilibrium Constraints via Free-Disposal Sets

Funds: 

The National Natural Science Foundation of China(11301571)

  • 摘要: 在自由支配集下,对一类近似平衡约束向量优化问题(AOPVF)的稳定性进行研究.首先,在较弱的凸性假设下获得了约束集映射的Berge-半连续性和约束集的闭性、凸性和紧性结果.然后,在目标函数列Gamma-收敛的假设下,分别得到了AOPVF弱有效解映射Berge半连续和弱有效解集下Painlevé-Kuratowski收敛的充分条件,并给出例子说明结论是新颖和有意义的.
  • LUO Z Q, PANG J S, RALPH D.Mathematical Programs With Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996.
    [2]HUANG X X, YANG X Q, ZHU D L. Levitin-Polyak well-posedness of variational inequality problems with functional constraints[J].Journal of Global Optimization,2009,44(2): 159-174.
    [3]LIGNOLA M B, MORGAN J.α-well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints[J].Journal of Global Optimization,2006,36(3): 439-459.
    [4]GONG X H. Continuity of the solution set to parametric weak vector equilibrium problems[J].Journal of Optimization Theory and Applications,2008,139(1): 35-46.
    [5]PENG Z Y, YANG X M. Painlevé-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity[J].Acta Mathematicae Applicatae Sinica(English Series),2014,30(4): 845-858.
    [6]PENG Z Y, WANG Z Y, YANG X M. Connectedness of solution sets for weak generalized symmetric Ky Fan inequality problems via addition-invariant sets[J].Journal of Optimization Theory and Applications,2020,185(1): 188-206.
    [7]MISHRA S K, JAISWAL M, LE THI H A. Nonsmooth semi-infinite programming problem using limiting subdifferentials[J].Journal of Global Optimization,2012,53(2): 285-296.
    [8]CHEN G Y, CRAVEN B D. Existence and continuity of solutions for vector optimization[J].Journal of Optimization Theory and Applications,1994,81(3): 459-468.
    [9]PENG Z Y, WANG X F, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J].Set-Valued and Variational Analysis,2019,27(1): 103-118.
    [10]邵重阳, 彭再云, 王泾晶, 等. 参数广义弱向量拟平衡问题解映射的H-连续性刻画[J]. 应用数学和力学, 2019,40(4): 452-462.(SHAO Chongyang, PENG Zaiyun, WANG Jingjing, et al. Characterizations of H-continuity for solution mapping to parametric generalized weak vector quasi-equilibrium problems[J].Applied Mathematics and Mechanics,2019,40(4): 452-462.(in Chinese))
    [11]CHUONG T D, HUY N Q, YAO J C. Stability of semi-infinite vector optimization problems under functional perturbations[J].Journal of Global Optimization,2009,45(4): 583-595.
    [12]FAN X, CHENG C, WANG H. Stability of semi-infinite vector optimization problems without compact constraints[J].Nonlinear Analysis: Theory, Methods & Applications,2011,74(6): 2087-2093.
    [13]ZHAO Y, PENG Z Y, YANG X M. Painlevé-Kuratowski convergences of the solution sets for perturbed generalized systems[J].Journal of Nonlinear and Convex Analysis,2014,15(6): 1249-1259.
    [14]彭再云, 熊勤, 王泾晶, 等. 近似平衡约束向量优化问题解集的上Painlevé-Kuratowski收敛性[J]. 系统科学与数学, 2018,38(8): 960-970.(PENG Zaiyun, XIONG Qin, WANG Jingjing, et al. On upper Painlevé-Kuratowski convergence of the solutions set to vector optimization problems under approximate equilibrium constraints[J].Journal of Systems Science and Mathematical Sciences,2018,38(8): 960-970.(in Chinese))
    [15]PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J].Journal of Global Optimization,2018,70(1): 55-69.
    [16]邵重阳, 彭再云, 刘芙萍, 等. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020,41(8): 912-920.(SHAO Chongyang, PENG Zaiyun, LIU Fuping, et al. Berge lower semi-continuity of parametric generalized vector quasi-equilibrium problems under improvement set mappings[J].Applied Mathematics and Mechanics,2020,41(8): 912-920.(in Chinese))
    [17]WANG J J, SHAO C Y, PENG Z Y. Stability and scalarization for perturbed set-valued optimization problems with constraints via general ordering sets[J].Pacific Journal of Optimization,2019,15(4): 529-549.
    [18]LUC D T.Theory of Vector Optimization[M]. Berlin: Springer-Verlag, 1989.
    [19]AUBIN J P, EKELAND I.Applied Nonlinear Analysis[M]. New York: John Wiley and Sons, 1984.
    [20]BERGE C.Topological Spaces[M]. London: Oliver and Boyd, 1963.
    [21]ROCKAFELLAR R T, WETS R J B.Variational Analysis[M]. Berlin: Springer Science & Business Media, 2009.
    [22]OPPEZZI P, ROSSI A M. A convergence for vector valued functions[J].Optimization,2008,57(3): 435-448.
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  20
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 修回日期:  2021-01-22
  • 网络出版日期:  2021-09-29

目录

    /

    返回文章
    返回