留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含非线性阻尼的2D g-Navier-Stokes方程解的一致渐近性

王小霞

王小霞. 含非线性阻尼的2D g-Navier-Stokes方程解的一致渐近性 [J]. 应用数学和力学,2022,43(4):416-423 doi: 10.21656/1000-0887.410398
引用本文: 王小霞. 含非线性阻尼的2D g-Navier-Stokes方程解的一致渐近性 [J]. 应用数学和力学,2022,43(4):416-423 doi: 10.21656/1000-0887.410398
WANG Xiaoxia. Uniform Asymptoticity of the Solution to the 2D g-Navier-Stokes Equation With Nonlinear Damping[J]. Applied Mathematics and Mechanics, 2022, 43(4): 416-423. doi: 10.21656/1000-0887.410398
Citation: WANG Xiaoxia. Uniform Asymptoticity of the Solution to the 2D g-Navier-Stokes Equation With Nonlinear Damping[J]. Applied Mathematics and Mechanics, 2022, 43(4): 416-423. doi: 10.21656/1000-0887.410398

含非线性阻尼的2D g-Navier-Stokes方程解的一致渐近性

doi: 10.21656/1000-0887.410398
基金项目: 国家自然科学基金(11971378);陕西省自然科学基金(2018JM1042);陕西省大学生创新创业训练计划(S202110719115)
详细信息
    作者简介:

    王小霞(1978—),女,副教授,硕士,硕士生导师(E-mail:yd-wxx@163.com

  • 中图分类号: O175; O35

Uniform Asymptoticity of the Solution to the 2D g-Navier-Stokes Equation With Nonlinear Damping

  • 摘要:

    研究了有界区域上含非线性阻尼的2D g-Navier-Stokes 方程解的一致渐近性,通过证明过程族的一致吸收集存在和一致条件(C)成立,得到了含非线性阻尼的2D g-Navier-Stokes 方程一致吸引子存在。

  • [1] ROH J. g-Navier-Stokes equations[D]. PhD Thesis. University of Minnesota, 2001.
    [2] BAE H O, ROH J. Existence of solutions of the g-Navier-Stokes equations[J]. Taiwanese Journal of Mathematics, 2004, 8(1): 85-102.
    [3] ROH J. Dynamics of the g-Navier-Stokes equations[J]. Journal of Differential Equations, 2005, 211(2): 452-484. doi: 10.1016/j.jde.2004.08.016
    [4] KWAK M, KWEANA H, ROH J. The dimension of attractor of the 2D g-Navier-Stokes equations[J]. Journal of Mathematical Analysis and Applications, 2006, 315(2): 436-461. doi: 10.1016/j.jmaa.2005.04.050
    [5] JIANG J P, HOU Y R. The global attractor of g-Navier-Stokes equations with linear dampness on R2[J]. Applied Mathematics and Computation, 2009, 215(3): 1068-1076. doi: 10.1016/j.amc.2009.06.035
    [6] JIANG J P, WANG X X. Global attractor of 2D autonomous g-Navier-Stokes equations[J]. Applied Mathematics and Mechanics(English Edition), 2013, 34(3): 385-394. doi: 10.1007/s10483-013-1678-7
    [7] 姜金平, 侯延仁. 有界区域上2D非自治g-Navier-Stokes方程的拉回吸引子[J]. 应用数学和力学, 2010, 31(6): 670-680. (JIANG Jinping, HOU Yanren. Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains[J]. Applied Mathematics and Mechanics, 2010, 31(6): 670-680.(in Chinese) doi: 10.1007/s10483-010-1304-x
    [8] 姜金平, 侯延仁, 王小霞. 含线性阻尼的2D非自治g-Navier-Stokes方程的拉回吸引子[J]. 应用数学和力学, 2011, 32(2): 144-157. (JIANG Jinping, HOU Yanren, WANG Xiaoxia. Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness[J]. Applied Mathematics and Mechanics, 2011, 32(2): 144-157.(in Chinese)
    [9] JIANG J P, HOU Y R, WANG X X. The pullback asymptotic behavior of the solutions for 2D nonautonomous g-Navier-Stokes equations[J]. Advances in Applied Mathematics and Mechanics, 2012, 4(2): 223-237. doi: 10.4208/aamm.10-m1071
    [10] ANH C T, QUYET D T. Long-time behavior for 2D non-autonomous g-Navier-Stokes equations[J]. Annales Polonici Mathematici, 2012, 103(3): 277-302. doi: 10.4064/ap103-3-5
    [11] QUYET D T. Pullback attractors for strong solutions of 2D non-autonomous g-Navier-Stokes equations[J]. Acta Mathematica Vietnamica, 2015, 40: 637-651. doi: 10.1007/s40306-014-0073-0
    [12] ANH C T, THANH N V, TUAN N V. On the stability of solutions to stochastic 2D g-Navier-Stokes equations with finite delays[J]. Random Operators and Stochastic Equations, 2017, 25(4): 1-14.
    [13] FENG X L, YOU B. Random attractors for the two-dimensional stochastic g-Navier-Stokes equations[J]. Stochastics: an International Journal of Probability and Stochastic Processes, 2020, 92(4): 613-626. doi: 10.1080/17442508.2019.1642340
    [14] BRZEZNIAK Z, CARABALLO T, LANGA J A, et al. Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains[J]. Journal of Differential Equations, 2013, 255: 3897-3919. doi: 10.1016/j.jde.2013.07.043
    [15] BRZEZNIAK Z, LI Y. Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains[J]. Transactions of the American Mathematical Society, 2006, 358(12): 5587-5629. doi: 10.1090/S0002-9947-06-03923-7
    [16] SONG X L, HOU Y R. Uniform attractora for three-dimensional Navier-Stokes equations with nonlinear damping[J]. Journal of Mathematical Analysis and Applications, 2015, 422(1): 337-351. doi: 10.1016/j.jmaa.2014.08.044
    [17] MA S, ZHONG C K, SONG H T. Attractors for nonautonomous 2D Navier-Stokes equations with less regular symbols[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(9): 4215-4222.
    [18] TEMAM R. Infnite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 1997.
    [19] LU S S, WU H Q, ZHONG C K. Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces[J]. Discrete & Continuous Dynamical Systems, 2005, 13(3): 701-719.
    [20] CHESKIDOV A, LU S S. Uniform global attractors for the nonautonomous 3D Navier-Stokes equations[J]. Advances in Mathematics, 2014, 267(2): 277-306.
    [21] MA Q F, WANG S H, ZHONG C K. Necessary and sufficient conditions for the existence of global attractors for semigroup and applications[J]. Indiana University Mathematics Journal, 2002, 51(6): 1541-1570. doi: 10.1512/iumj.2002.51.2255
  • 加载中
计量
  • 文章访问数:  139
  • HTML全文浏览量:  82
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 录用日期:  2021-10-10
  • 修回日期:  2021-10-10
  • 网络出版日期:  2022-03-16
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回