留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时变拓扑结构的二阶多智能体系统采样一致性

郑丽颖 杨永清 许先云

郑丽颖,杨永清,许先云. 基于时变拓扑结构的二阶多智能体系统采样一致性 [J]. 应用数学和力学,2022,43(7):1-9 doi: 10.21656/1000-0887.420220
引用本文: 郑丽颖,杨永清,许先云. 基于时变拓扑结构的二阶多智能体系统采样一致性 [J]. 应用数学和力学,2022,43(7):1-9 doi: 10.21656/1000-0887.420220
ZHENG Liying, YANG Yongqing, XU Xianyun. Sampling Consensus of Second-Order Multi-Agent Systems Based on Time-Varying Topology[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420220
Citation: ZHENG Liying, YANG Yongqing, XU Xianyun. Sampling Consensus of Second-Order Multi-Agent Systems Based on Time-Varying Topology[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420220

基于时变拓扑结构的二阶多智能体系统采样一致性

doi: 10.21656/1000-0887.420220
基金项目: 国家自然科学基金(61973137);江苏省自然科学基金(BK20201339);中央高校基本科研业务费专项资金(JUSRP22016)
详细信息
    作者简介:

    郑丽颖(1996—),女,硕士(E-mail:421592747@qq.com

    杨永清(1964—),男,教授,博士生导师(通讯作者. E-mail: yongqingyang@jiangnan.edu.cn

    许先云(1963—),女,副教授(E-mail: xxy630417@jiangnan.edu.cn

  • 中图分类号: TP273; O175

Sampling Consensus of Second-Order Multi-Agent Systems Based on Time-Varying Topology

  • 摘要: 基于速度一致位移差保持不变的一致性概念,研究了二阶多智能体系统在时变拓扑下的采样一致性问题。首先,引入虚拟领导者,将具有时变拓扑结构的多智能体系统的采样一致性问题转换为误差系统的采样控制稳定性问题。其次,通过预估采样误差,研究采样误差对系统达到一致性的影响。最后,应用Lyapunov稳定性理论,分析所构造的误差系统的稳定性,并给出该误差系统最终稳定的充分条件。数值仿真结果验证了理论分析的有效性和正确性。
  • 图  1  采样数据控制协议下三个智能体的位移轨迹及其与虚拟领导者轨迹的误差

    Figure  1.  The position trajectories of three agents under sampled-data control protocol and Error in position between three agents and their virtual leader under sampled data control protocol

    图  2  采样数据控制协议下三个智能体与其虚拟领导者速度的误差

    Figure  2.  Error in speed between three agents and their virtual leader under sampled data control protocol

  • [1] JADBABAIE A, JIE L, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001. doi: 10.1109/TAC.2003.812781
    [2] TIAN B, LU H, ZUO Z, et al. Fixed-time leader-follower output feedback consensus for second-order multiagent systems[J]. IEEE Transactions on Cybernetics, 2018, 49(4): 1545-1550.
    [3] 孙凤琪. 不确定时滞摄动滤波误差动态系统的稳定性分析[J]. 应用数学和力学, 2020, 41(8): 899-911.

    SUN Fengqi, Stability analysis of uncertain time-delay perturbed filtering error dynamic system [J]. Applied Mathematics and Mechanics, 2020, 41(8): 899-911. (in Chinese)
    [4] WU Y, WANG Z, DING S, et al. Leader-follower consensus of multi-agent systems in directed networks with actuator faults[J]. Neurocomputing, 2018, 275: 1177-1185. doi: 10.1016/j.neucom.2017.09.066
    [5] GUO W, LÜ J, CHEN S, et al. Second-order tracking control for leader-follower multi-agent flocking in directed graphs with switching topology[J]. Systems & Control Letters, 2011, 60(12): 1051-1058.
    [6] TANG S X, QI J, ZHANG J. Formation tracking control for multi-agent systems: a wave-equation based approach[J]. International Journal of Control Automation and Systems, 2017, 15(6): 2704-2713. doi: 10.1007/s12555-016-0562-0
    [7] REN J, SONG Q, GAO Y, et al. Leader-following consensus of nonlinear singular multi-agent systems under signed digraph[J]. International Journal of Systems Science, 2020, 52(4): 1-14.
    [8] REN J, SONG Q, LU G. Event-triggered bipartite leader-following consensus of second-order nonlinear multi-agent systems under signed digraph[J]. Journal of the Franklin Institute, 2019, 356(12): 6591-6609. doi: 10.1016/j.jfranklin.2019.06.034
    [9] SONG Q, CAO J, YU W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[J]. Systems & Control Letters, 2010, 59(9): 553-562.
    [10] REN C E, CHEN L, CHEN C, et al. Quantized consensus control for second-order multi-agent systems with nonlinear dynamics[J]. Neurocomputing, 2016, 175: 529-537. doi: 10.1016/j.neucom.2015.10.090
    [11] CAO M, XIAO F, WANG L. Second-order leader-following consensus based on time and event hybrid-driven control[J]. Systems & Control Letters, 2014, 74: 90-97.
    [12] ZHANG W B, TANG Y, HAN Q L, et al. Sampled-data consensus of linear time-varying multi-agent networks with time-varying topologies[J]. IEEE Transactions on Cybernetics, 2020, 52(1): 128-137.
    [13] BASIN M V, ELVIRA-CEJA S, SANCHEZ E N. Central suboptimal mean-square H controller design for linear stochastic systems[J]. International Journal of Systems Science, 2011, 42(5): 821-827. doi: 10.1080/00207721.2010.543493
    [14] TAN F, ZHOU B, DUAN G R. Finite-time stabilization of linear time-varying systems by piecewise constant feedback[J]. Automatica, 2016, 68: 277-285. doi: 10.1016/j.automatica.2016.01.003
    [15] ZHOU B, EGOROV A V. Razumikhin and Krasovskii stability theorems for time-varying time-delay systems[J]. Automatica, 2016, 71: 281-291. doi: 10.1016/j.automatica.2016.04.048
    [16] ZHOU B. On asymptotic stability of linear time-varying systems[J]. Automatica, 2016, 68: 266-276. doi: 10.1016/j.automatica.2015.12.030
    [17] MAZENC F, MALISOFF M. Stabilization and robustness analysis for time-varying systems with time-varying delays using a sequential subpredictors approach[J]. Automatica, 2017, 82: 118-127. doi: 10.1016/j.automatica.2017.04.020
    [18] TONG P, CHEN S, WANG L. Finite-time consensus of multi-agent systems with continuous time-varying interaction topology[J]. Neurocomputing, 2018, 284: 187-193. doi: 10.1016/j.neucom.2018.01.004
    [19] WEI R, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661. doi: 10.1109/TAC.2005.846556
    [20] XUE L, ZHENG Y. Finite-time consensus of switched multiagent systems[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 47(7): 1535-1545.
    [21] MENG H, CHEN Z, MIDDLETON R. Consensus of multi-agents in switching networks using input-to-state stability of switched systems[J]. IEEE Transactions on Automatic Control, 2018, 63(11): 3964-3971. doi: 10.1109/TAC.2018.2809454
    [22] WU X, YANG T, CAO J, et al. Distributed consensus of stochastic delayed multi-agent systems under asynchronous switching[J]. IEEE Transactions on Cybernetics, 2017, 46(8): 1817-1827.
    [23] ROY C N, SRIKANT S, DEBASISH C. A new condition for asymptotic consensus over switching graphs[J]. Automatica, 2018, 97: 18-26. doi: 10.1016/j.automatica.2018.07.018
    [24] 茆汉国, 张建德. 多智能体系统的非震颤固定时间一致性[J]. 计算机工程与应用, 2020, 56(4): 158-162. (MAO Hanguo, ZHANG Jiande. Nonchattering fixed time consensus in multi-agent systems[J]. Computer Engineering and Applications, 2020, 56(4): 158-162.(in Chinese) doi: 10.3778/j.issn.1002-8331.1811-0223

    MAO Hanguo, ZHANG Jiande. Nonchattering fixed time consensus in multi-agent systems[J]. Computer Engineering and Applications, 2020, 56(4): 158-162. (in Chinese)) doi: 10.3778/j.issn.1002-8331.1811-0223
    [25] GAO Y, WANG L. Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology[J]. IEEE Transactions on Automatic Control, 2011, 56(5): 1226-1231. doi: 10.1109/TAC.2011.2112472
    [26] XIE T, LIAO X, LI H. Leader-following consensus in second-order multi-agent systems with input time delay: an event-triggered sampling approach[J]. Neurocomputing, 2016, 177: 130-135. doi: 10.1016/j.neucom.2015.11.013
    [27] LIU S, LI T, XIE L H, et al. Continuous-time and sampled-data-based average consensus with logarithmic quantizers[J]. Automatica, 2013, 49(11): 3329-3336. doi: 10.1016/j.automatica.2013.07.016
    [28] 刘孝琪, 康怀祺, 曾超. 多智能体系统初始状态一致性应用研究[J]. 计算机工程与应用, 2014, 50(13): 53-56. (LIU Xiaoqi, KANG Huaiqi, ZENG Chao. Application research in multi-agent system about consensus on initial state[J]. Computer Engineering and Applications, 2014, 50(13): 53-56.(in Chinese) doi: 10.3778/j.issn.1002-8331.1208-0133

    LIU Xiaoqi, KANG Huaiqi, ZENG Chao. Application research in multi-agent system about consensus on initial state[J]. Computer Engineering and Applications, 2014, 50(13): 53-56. (in Chinese)) doi: 10.3778/j.issn.1002-8331.1208-0133
    [29] WANG C, JI H. Robust consensus tracking for a class of heterogeneous second-order nonlinear multi-agent systems[J]. International Journal of Robust & Nonlinear Control, 2015, 25(17): 3367-3383.
    [30] 刘晨, 刘磊. 基于事件触发策略的多智能体系统的最优主-从一致性分析[J]. 应用数学和力学, 2019, 40(11): 1278-1288. (LIU CHEN, LIU LEI. Optimal leader-follower consensus of multi-agent systems based on the event-triggered strategy[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1278-1288.(in Chinese)

    LIU CHEN, LIU LEI. Optimal leader-follower consensus of multi-agent systems based on the event-triggered strategy[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1278-1288. (in Chinese))
    [31] 周军, 童东兵, 陈巧玉. 基于事件触发控制带有多时变时滞的主从系统同步[J]. 应用数学和力学, 2019, 40(12): 1389-1398. (ZHOU Jun, TONG Dongbing, CHEN Qiaoyu. Synchronization of master-slave systems with multiple time-varying delays based on the event-triggered mechanism[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1389-1398.(in Chinese)

    ZHOU Jun, TONG Dongbing, CHEN Qiaoyu. Synchronization of master-slave systems with multiple time-varying delays based on the event-triggered mechanism[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1389-1398. (in Chinese))
    [32] SU Y F, HUANG J. Cooperative global output regulation of heterogeneous second-order nonlinear uncertain multi-agent systems[J]. Automatica, 2013, 49(11): 3345-3350. doi: 10.1016/j.automatica.2013.08.001
    [33] YI C B, XU C, FENG J W, et al. Leading-following consensus for multi-agent systems with event-triggered delayed impulsive control[J]. IEEE Access, 2019, 7: 136419-136427.
    [34] KIM H, SHIM H, BACK J, et al. Consensus of output-coupled linear multi-agent systems under fast switching network: averaging approach[J]. Automatica, 2013, 49(1): 267-272. doi: 10.1016/j.automatica.2012.09.025
    [35] HORN R A, JOHNSON C R. Matrix Analysis[M]. New York: Cambridge University Press, 1985.
    [36] 廖晓昕. 稳定性的理论、方法和应用[M]. 2版. 武汉: 华中科技大学出版社, 2010.

    LIAO Xiaoxin. Theory, Method and Application of Stability[M]. 2nd ed. Wuhan: Huazhong University of science and Technology Press, 2010. (in Chinese)
  • 加载中
图(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-28
  • 网络出版日期:  2022-06-16

目录

    /

    返回文章
    返回