[1] |
JADBABAIE A, JIE L, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001. doi: 10.1109/TAC.2003.812781
|
[2] |
TIAN B, LU H, ZUO Z, et al. Fixed-time leader-follower output feedback consensus for second-order multiagent systems[J]. IEEE Transactions on Cybernetics, 2018, 49(4): 1545-1550.
|
[3] |
孙凤琪. 不确定时滞摄动滤波误差动态系统的稳定性分析[J]. 应用数学和力学, 2020, 41(8): 899-911.SUN Fengqi, Stability analysis of uncertain time-delay perturbed filtering error dynamic system [J]. Applied Mathematics and Mechanics, 2020, 41(8): 899-911. (in Chinese)
|
[4] |
WU Y, WANG Z, DING S, et al. Leader-follower consensus of multi-agent systems in directed networks with actuator faults[J]. Neurocomputing, 2018, 275: 1177-1185. doi: 10.1016/j.neucom.2017.09.066
|
[5] |
GUO W, LÜ J, CHEN S, et al. Second-order tracking control for leader-follower multi-agent flocking in directed graphs with switching topology[J]. Systems & Control Letters, 2011, 60(12): 1051-1058.
|
[6] |
TANG S X, QI J, ZHANG J. Formation tracking control for multi-agent systems: a wave-equation based approach[J]. International Journal of Control Automation and Systems, 2017, 15(6): 2704-2713. doi: 10.1007/s12555-016-0562-0
|
[7] |
REN J, SONG Q, GAO Y, et al. Leader-following consensus of nonlinear singular multi-agent systems under signed digraph[J]. International Journal of Systems Science, 2020, 52(4): 1-14.
|
[8] |
REN J, SONG Q, LU G. Event-triggered bipartite leader-following consensus of second-order nonlinear multi-agent systems under signed digraph[J]. Journal of the Franklin Institute, 2019, 356(12): 6591-6609. doi: 10.1016/j.jfranklin.2019.06.034
|
[9] |
SONG Q, CAO J, YU W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control[J]. Systems & Control Letters, 2010, 59(9): 553-562.
|
[10] |
REN C E, CHEN L, CHEN C, et al. Quantized consensus control for second-order multi-agent systems with nonlinear dynamics[J]. Neurocomputing, 2016, 175: 529-537. doi: 10.1016/j.neucom.2015.10.090
|
[11] |
CAO M, XIAO F, WANG L. Second-order leader-following consensus based on time and event hybrid-driven control[J]. Systems & Control Letters, 2014, 74: 90-97.
|
[12] |
ZHANG W B, TANG Y, HAN Q L, et al. Sampled-data consensus of linear time-varying multi-agent networks with time-varying topologies[J]. IEEE Transactions on Cybernetics, 2020, 52(1): 128-137.
|
[13] |
BASIN M V, ELVIRA-CEJA S, SANCHEZ E N. Central suboptimal mean-square H∞ controller design for linear stochastic systems[J]. International Journal of Systems Science, 2011, 42(5): 821-827. doi: 10.1080/00207721.2010.543493
|
[14] |
TAN F, ZHOU B, DUAN G R. Finite-time stabilization of linear time-varying systems by piecewise constant feedback[J]. Automatica, 2016, 68: 277-285. doi: 10.1016/j.automatica.2016.01.003
|
[15] |
ZHOU B, EGOROV A V. Razumikhin and Krasovskii stability theorems for time-varying time-delay systems[J]. Automatica, 2016, 71: 281-291. doi: 10.1016/j.automatica.2016.04.048
|
[16] |
ZHOU B. On asymptotic stability of linear time-varying systems[J]. Automatica, 2016, 68: 266-276. doi: 10.1016/j.automatica.2015.12.030
|
[17] |
MAZENC F, MALISOFF M. Stabilization and robustness analysis for time-varying systems with time-varying delays using a sequential subpredictors approach[J]. Automatica, 2017, 82: 118-127. doi: 10.1016/j.automatica.2017.04.020
|
[18] |
TONG P, CHEN S, WANG L. Finite-time consensus of multi-agent systems with continuous time-varying interaction topology[J]. Neurocomputing, 2018, 284: 187-193. doi: 10.1016/j.neucom.2018.01.004
|
[19] |
WEI R, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661. doi: 10.1109/TAC.2005.846556
|
[20] |
XUE L, ZHENG Y. Finite-time consensus of switched multiagent systems[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 47(7): 1535-1545.
|
[21] |
MENG H, CHEN Z, MIDDLETON R. Consensus of multi-agents in switching networks using input-to-state stability of switched systems[J]. IEEE Transactions on Automatic Control, 2018, 63(11): 3964-3971. doi: 10.1109/TAC.2018.2809454
|
[22] |
WU X, YANG T, CAO J, et al. Distributed consensus of stochastic delayed multi-agent systems under asynchronous switching[J]. IEEE Transactions on Cybernetics, 2017, 46(8): 1817-1827.
|
[23] |
ROY C N, SRIKANT S, DEBASISH C. A new condition for asymptotic consensus over switching graphs[J]. Automatica, 2018, 97: 18-26. doi: 10.1016/j.automatica.2018.07.018
|
[24] |
茆汉国, 张建德. 多智能体系统的非震颤固定时间一致性[J]. 计算机工程与应用, 2020, 56(4): 158-162. (MAO Hanguo, ZHANG Jiande. Nonchattering fixed time consensus in multi-agent systems[J]. Computer Engineering and Applications, 2020, 56(4): 158-162.(in Chinese) doi: 10.3778/j.issn.1002-8331.1811-0223MAO Hanguo, ZHANG Jiande. Nonchattering fixed time consensus in multi-agent systems[J]. Computer Engineering and Applications, 2020, 56(4): 158-162. (in Chinese)) doi: 10.3778/j.issn.1002-8331.1811-0223
|
[25] |
GAO Y, WANG L. Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology[J]. IEEE Transactions on Automatic Control, 2011, 56(5): 1226-1231. doi: 10.1109/TAC.2011.2112472
|
[26] |
XIE T, LIAO X, LI H. Leader-following consensus in second-order multi-agent systems with input time delay: an event-triggered sampling approach[J]. Neurocomputing, 2016, 177: 130-135. doi: 10.1016/j.neucom.2015.11.013
|
[27] |
LIU S, LI T, XIE L H, et al. Continuous-time and sampled-data-based average consensus with logarithmic quantizers[J]. Automatica, 2013, 49(11): 3329-3336. doi: 10.1016/j.automatica.2013.07.016
|
[28] |
刘孝琪, 康怀祺, 曾超. 多智能体系统初始状态一致性应用研究[J]. 计算机工程与应用, 2014, 50(13): 53-56. (LIU Xiaoqi, KANG Huaiqi, ZENG Chao. Application research in multi-agent system about consensus on initial state[J]. Computer Engineering and Applications, 2014, 50(13): 53-56.(in Chinese) doi: 10.3778/j.issn.1002-8331.1208-0133LIU Xiaoqi, KANG Huaiqi, ZENG Chao. Application research in multi-agent system about consensus on initial state[J]. Computer Engineering and Applications, 2014, 50(13): 53-56. (in Chinese)) doi: 10.3778/j.issn.1002-8331.1208-0133
|
[29] |
WANG C, JI H. Robust consensus tracking for a class of heterogeneous second-order nonlinear multi-agent systems[J]. International Journal of Robust & Nonlinear Control, 2015, 25(17): 3367-3383.
|
[30] |
刘晨, 刘磊. 基于事件触发策略的多智能体系统的最优主-从一致性分析[J]. 应用数学和力学, 2019, 40(11): 1278-1288. (LIU CHEN, LIU LEI. Optimal leader-follower consensus of multi-agent systems based on the event-triggered strategy[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1278-1288.(in Chinese)LIU CHEN, LIU LEI. Optimal leader-follower consensus of multi-agent systems based on the event-triggered strategy[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1278-1288. (in Chinese))
|
[31] |
周军, 童东兵, 陈巧玉. 基于事件触发控制带有多时变时滞的主从系统同步[J]. 应用数学和力学, 2019, 40(12): 1389-1398. (ZHOU Jun, TONG Dongbing, CHEN Qiaoyu. Synchronization of master-slave systems with multiple time-varying delays based on the event-triggered mechanism[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1389-1398.(in Chinese)ZHOU Jun, TONG Dongbing, CHEN Qiaoyu. Synchronization of master-slave systems with multiple time-varying delays based on the event-triggered mechanism[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1389-1398. (in Chinese))
|
[32] |
SU Y F, HUANG J. Cooperative global output regulation of heterogeneous second-order nonlinear uncertain multi-agent systems[J]. Automatica, 2013, 49(11): 3345-3350. doi: 10.1016/j.automatica.2013.08.001
|
[33] |
YI C B, XU C, FENG J W, et al. Leading-following consensus for multi-agent systems with event-triggered delayed impulsive control[J]. IEEE Access, 2019, 7: 136419-136427.
|
[34] |
KIM H, SHIM H, BACK J, et al. Consensus of output-coupled linear multi-agent systems under fast switching network: averaging approach[J]. Automatica, 2013, 49(1): 267-272. doi: 10.1016/j.automatica.2012.09.025
|
[35] |
HORN R A, JOHNSON C R. Matrix Analysis[M]. New York: Cambridge University Press, 1985.
|
[36] |
廖晓昕. 稳定性的理论、方法和应用[M]. 2版. 武汉: 华中科技大学出版社, 2010.LIAO Xiaoxin. Theory, Method and Application of Stability[M]. 2nd ed. Wuhan: Huazhong University of science and Technology Press, 2010. (in Chinese)
|