留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kolmogorov前向方程评估甲型H1N1流感疫情的动态变化

闫琴玲 唐三一

闫琴玲,唐三一. 基于Kolmogorov前向方程评估甲型H1N1流感疫情的动态变化 [J]. 应用数学和力学,2022,43(4):435-444 doi: 10.21656/1000-0887.420243
引用本文: 闫琴玲,唐三一. 基于Kolmogorov前向方程评估甲型H1N1流感疫情的动态变化 [J]. 应用数学和力学,2022,43(4):435-444 doi: 10.21656/1000-0887.420243
Qinling YAN, Sanyi TANG. Dynamic Changes of Influenza A/H1N1 Epidemic Evaluated Based on the Kolmogorov Forward Equation[J]. Applied Mathematics and Mechanics, 2022, 43(4): 435-444. doi: 10.21656/1000-0887.420243
Citation: Qinling YAN, Sanyi TANG. Dynamic Changes of Influenza A/H1N1 Epidemic Evaluated Based on the Kolmogorov Forward Equation[J]. Applied Mathematics and Mechanics, 2022, 43(4): 435-444. doi: 10.21656/1000-0887.420243

基于Kolmogorov前向方程评估甲型H1N1流感疫情的动态变化

doi: 10.21656/1000-0887.420243
基金项目: 国家自然科学基金(12001058;12031010);陕西省自然科学青年基金(2021JQ-215);中央高校基本科研业务费(300102121103)
详细信息
    作者简介:

    闫琴玲(1988—),女,博士(E-mail:yanqinling1222@chd.edu.cn)

    唐三一(1970—),男,教授,博士(通讯作者. E-mail:sytang@snnu.edu.cn)

  • 中图分类号: O29

Dynamic Changes of Influenza A/H1N1 Epidemic Evaluated Based on the Kolmogorov Forward Equation

  • 摘要:

    基于个体水平的传染病模型可以揭示随机性在传染病疫情防控中的重要作用。研究此类模型的普遍方法是通过事件驱动的、大量重复的随机模拟来确定预测变量的范围。而基于Kolmogorov前向方程(KFE)研究个体水平的传染病模型,不仅不需要大量的重复模拟来确定预测变量的范围,而且可以同时考虑每种状态发生的概率。因此,基于2009年西安市第八医院甲型H1N1流感数据,建立了基于社交网络的个体决策心理模型,以确定行为改变率;进一步地,为得到传染病传播过程中各状态的概率分布,基于改进的个体SIR模型,通过Markov过程推导出KFE。结果表明:通过数值求解KFE可以得到整个爆发过程中每种状态发生的概率分布、最严重的时间段及相应的概率,从而能更快、更准确地了解甲型H1N1疫情的传播过程,因此有助于高效地进行甲型H1N1疫情防控。

  • 图  1  2009年9月3日至10月10日西安市第八医院甲型H1N1病例数:(a)新增病例数; (b) 累计病例数

    Figure  1.  The hospital notifications for A/H1N1 from 3rd September to 10th October 2009 in Xi’an 8th Hospital: (a) the number of new hospital notifications; (b) the accumulated number of hospital notifications

    2  流感流行38天计算出的概率质量函数的快照: (a)到第38天时,感染人数与易感人数的联合条件概率质量函数$ P(S(t),I(t)|I(t)>0) $;(b)概率质量函数的轮廓图;(c)第38天恢复人数的条件概率质量函数$ P(R(t)|I(t)>0) $

    2.  A snapshot of the calculated probability mass function at the end of the 38 d influenza epidemic: (a)joint conditional probability mass function $ P(S(t),I(t)|I(t)>0) $ of infected and susceptible individuals; (b) the contour of the calculated probability mass function; (c) conditional probability mass function $ P(R(t)|I(t)>0) $ of recovered individuals

    图  3  均值、均值±1 标准差:(a)易感者;(b)感染者;(c)恢复者;(d)基于MCMC估计的感染者

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  3.  The mean values and the mean values ±1 standard deviation values: (a) the susceptible; (b) the infected; (c) the recovered;(d) the infected by MCMC

    A1  基于个体的LHBM流程图

    A1.  The individual-based scheme of the LHBM

    A2  基于模型(A6),对2 004个个体的个体行为改变率$ p_{{\rm{e}}}(i,t) $进行估计: (a)规则网络; (b) 小世界(WS) 网络; (c)NW 网络; (d) 随机网络

    A2.  The estimation of individual behaviour change rate $ p_{e}(i,t) $ for 2 004 persons based on model (A6): (a) the regular network; (b) the small-world (WS) network; (c) the Newman and Watts (NW) network; (d) the random network

    A1  在四种经典的社交网络结构下, 模型(A6)所有参数均值和标准差的估计值及取值范围

    A1.   The estimated values and ranges of means and standard deviations for all parameters of model (A6) with 4 classical social networks

    mean $ \mu $ min max best fit (regular) best fit (WS) best fit (NW) best fit (random)
    $ \delta $ 0.35 0.58 0.410 7 0.475 1 0.580 0 0.475 0
    $ \lambda $ 170 195 175.116 8 175.402 1 174.625 0 173.485 0
    $ \tau $ 6 8 6.761 4 6.898 6 6.895 5 6.510 9
    $ \xi $ 10 50 18.781 0 21.449 0 20.966 4 10.047 5
    $ \eta $ 0.3 0.6 0.599 5 0.482 2 0.513 3 0.414 5
    $ O_0 $ −0.75 −0.6 −0.637 3 −0.710 2 −0.613 6 −0.631 7
    $O_{ {1} }$ 0.001 0.1 0.009 3 0.060 8 0.059 0 0.048 4
    $O_{2}$ 0.65 1 0.717 0 0.846 3 0.999 3 0.759 6
    $O_3$ 0.01 0.15 0.065 4 0.092 3 0.149 8 0.084 0
    $O_4$ −0.75 −0.45 −0.504 5 −0.579 9 −0.497 2 −0.520 9
    standard deviation $ \sigma $ min max best fit (regular) best fit (WS) best fit (NW) best fit (random)
    $ \delta $ 0.01 0.1 0.038 1 0.058 3 0.094 0 0.046 7
    $ \lambda $ 1 5 3.591 6 3.837 8 4.458 9 3.144 4
    $ \tau $ 0 2 0.625 5 0.800 1 1.129 9 0.199 7
    $ \xi $ 2 2 2.000 0 2.000 0 2.000 0 2.000 0
    $ \eta $ 0.1 0.1 0.100 0 0.100 0 0.100 0 0.100 0
    $ O_0 $ 0.2 0.6 0.293 9 0.388 3 0.210 9 0.396 7
    $O_1$ 0.01 0.4 0.343 0 0.306 3 0.200 7 0.010 0
    $O_2$ 0.3 0.5 0.316 3 0.409 3 0.427 8 0.342 1
    $O_3$ 0.01 0.1 0.030 2 0.054 3 0.094 2 0.050 3
    $O_4$ 0.1 0.5 0.100 4 0.406 1 0.499 0 0.141 7
    下载: 导出CSV
  • [1] BARTLETT M S. Deterministic and stochastic models for recurrent epidemics[C]//Process Third Berkley Sympathetic Mathematical Statstics and Probalibity. 1956, 4(1956): 81-108.
    [2] RAND D A, WILSON H B. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics[J]. Proceedings of the Royal Society B, 1991, 246(1316): 179-184.
    [3] FOX G A. Life-history evolution and demographic stochasticity[J]. Ecology and Evolution, 1993, 7(1): 1-14.
    [4] GRENFELL B T, WILSON K, FINKENSTA B F, et al. Noise and determinism in synchronized sheep dynamics[J]. Nature, 1998, 394(6694): 674-677.
    [5] KEELING M J, WILSON H B, PACALA S W. Re-interpreting space time-lags and functional responses in ecological models[J]. Science, 2000, 290(5497): 1758-1761.
    [6] GILLESPIE D T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[J]. Journal of Computational Physics, 1976, 22(4): 403-434.
    [7] RENSHAW E. Modelling Biological Populations in Space and Time[M]. Cambridge: Cambridge University Press, 1995.
    [8] VAN KAMPEN N G. Stochastic Processes in Physics and Chemistry[M]. Amsterdam: Noth-Holland, 1983.
    [9] JENKINSON G, GOUTSIAS J. Numerical integration of the master equation in some models of stochastic epidemiology[J]. PLoS ONE, 2012, 7(5): e36160.
    [10] KEELING M J, ROSS J V. On methods for studying stochastic disease dynamics[J]. Journal of Royal Society Interface, 2008, 5(19): 171-181.
    [11] DIECKMANN U, LAW R. The dynamical theory of coevolution: a derivation from stochastic ecological processes[J]. Journal of Mathematical Biology, 1996, 34(5/6): 579-612.
    [12] ALONSO D, MCKANE A. Extinction dynamics in mainland-island metapopulations: an N-patch stochastic model[J]. Bulletin of Mathematical Biology, 2002, 64(5): 913-958.
    [13] ALONSO D, MCKANE A J, PASCUAL M. Stochastic amplification in epidemics[J]. Journal of the Royal Society Interface, 2006, 4(14): 575-582.
    [14] VIET A, MEDLEY G F. Stochastic dynamics of immunity in small populations: a general framework[J]. Mathematical Biosciences, 2006, 200(1): 28-43.
    [15] POLETTI P, CAPRILE B, AJELLI M, et al. Spontaneous behavioural changes in response to epidemics[J]. Journal of Theoretical Biology 2009, 260(1): 31-40.
    [16] POLETTI P. Human behaviour in epidemic modelling[D]. PhD Thesis. Trento: University of Trento, 2010.
    [17] DURHAM D P, CASMAN E A. Incorporating individual health-protective decisions into disease transmission models: a mathematical framework[J]. Journal of Royal Society Interface, 2012, 9(68): 562-570.
    [18] YAN Q L, TANG S Y, XIAO Y N. Impact of individual behaviour change on the spread of emerging infectious diseases[J]. Statistics in Medicine, 2018, 37(6): 948-969.
    [19] VAN KAMPEN N G. Stochastic processes in physics and chemistry[J]. Physics Today, 1983, 36(2): 78-80.
    [20] GILLESPIE D T. The chemical Langevin equation[J]. Journal of Chemical Physics, 2000, 113(1): 297-306.
    [21] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Bulletin of Mathematical Biology, 1991, 53(1/2): 57-87.
    [22] BECAR R, GONZALEZ P A, VASQUEZ Y. Fermionic greybody factors of two and five-dimensional dilatonic black holes[J]. European Physical Journal C, 2014, 74(8): 1-8.
    [23] WANG W D, ZHAO X Q. Threshold dynamics for compartmental epidemic models in periodic environments[J]. Journal of Dynamics and Differential Equations, 2008, 20(3): 699-717.
    [24] WANG X, XIAO Y N, WANG J R, et al. Stochastic disease dynamics of a hospital infection model[J]. Mathematical Biosciences, 2013, 241(1): 115-124.
    [25] KEELING M J, ROHANI P. Modeling Infectious Diseases in Humans and Animals[M]. Princeton: Princeton University Press, 2007.
    [26] CHAMPION V L, SKINNER C S. In Health Behaviour and Health Education: Theory, Research, and Practice [M]. 4th ed. San Francisco: John Wiley & Sons, 2008.
    [27] DURHAM D P, CASMAN E A. Incorporating individual health-protective decisions into disease transmission models: a mathematical framework[J]. Journal of Royal Society Interface, 2012, 9(2012): 562-570.
    [28] WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(1998): 440-442.
    [29] NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256.
    [30] HOLLAND M D, HASTINGS A. Strong effect of dispersal network structure on ecological dynamics[J]. Nature, 2012, 456(2012): 792-794.
    [31] NEWMAN M E J, WATTS D J. Renormalization group analysis of the small-world network model[J]. Physics Letters A, 1999, 263(1999): 341-346.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  38
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 录用日期:  2021-09-13
  • 修回日期:  2021-09-13
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回